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Chapter 1
INTRODUCTION

The very simplicity of the Hall thruster structure with no screens or other control surfaces,
makes it difficult to understand the interrelationships which, in the end, localize and shape
the various plasma regions existing in the accelerating channel. Bishaev and Kim|1] distin-
guish, in their experiments i) an upstream diffusion region, with negligible electric field, no
ion production, predominant ion motion towards the anode, and low plasma temperature; ii)
an intense ionization layer, placed near the channel exit, with peaks of plasma density and
temperature; and iii) an acceleration region, where most of the potential drop takes place, and
extending outside the channel into iv) the plume. These characteristics of the plasma flow
are confirmed by other experimental observations|2, 3] and by two-dimensional(2-D) plasma
simulations[4]. Since the radial magnetic field is usually shaped with a peak near the channel
exit, the above plasma structure has often been explained as simply a reflection of the magnetic
field distribution.

V. Kim, in a recent review paper on Hall thruster physics[5], recognizes that there is still
no model describing adequately the plasma dynamics inside the accelerating channel. The
importance of developing a reliable model that improves our understanding of the factors which
control plasma structure becomes evident when we attempt to improve upon existing Hall
thruster designs, particularly regarding (i) thrust efficiency, (ii) erosion, and (iii) control of
oscillations. Present design criteria are based mainly on testing experience. Erosion of the
thruster walls is the main factor limiting the thruster lifetime. The erosion rate is governed
by local plasma density, electron temperature, and sheath drop, and each of these may show
order-of-magnitude variations within the channel making it crucial to have theoretical guidance
for steering their peaks to the least damaging locations possible. Plasma self-oscillations are
manifested by a modulation of the discharge current, which sometimes is fairly deep, but at
other times it is much weaker or almost absent, and the reasons for these widely different and
badly-predictable behaviors are not understood at present.

One-dimensional(1D) macroscopic models can be simple but powerful tools to understand
the physics and parameters that govern the thruster response and to determine the basic scaling
laws for thruster magnitudes. Furthermore, these fast-to-solve models can be the ideal comple-
ment to time-consuming PIC-MCC 2D simulations|6, 7|, for Hall thruster design and analysis.
In general, published 1D analyses (Refs. [8, 9, 10, 11] are some of them) put the emphasis on
achieving satisfactory performance prediction which, if a few reasonable assumptions are intro-
duced about the flow structure, is not too difficult to achieve (particularly regarding thrust).
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However, these models fail to describe the whole plasma structure described by Bishaev and
Kim, and, in general, the model formulation was not consistent enough.

In 1998, E. Ahedo and M. Martinez-Sanchez decided to develop and analyze a macroscopic
model gathering reliability and clarity. Quantitative accuracy in the predictions should not be
the main goal. Instead emphasis will be given to the consistency of the governing equations
and their boundary conditions, and to include enough basic physics to illuminate the complex
interplay of phenomena which shape the Hall thruster plasma. Preliminary results|12, 13| were
promising and constitute the seed of the present Project.

We have organized the main body of this work in six chapters. In Chap. 2 we discuss the
general formulation of the model, from the discussion of the phenomena to be included in the
plasma equations and their function form to the geometry and unavoidable simplifications (in
the plume treatment, for instance). In Chap. 3 we discuss the basic model, that is the model
we think 'minimum’ to reproduce the rich plasma structure described by Bishaev and Kim.
In Chap. 4 we discuss a supplementary model of the radial interaction of the plasma with
the lateral walls of the thruster. In Chap. 5 we analyze the effects of the radial plasma/wall
interaction on the basic steady-state solution of Chap. 3. In Chap. 6 we solve a model that
includes heat conduction effects (but no radial effects). Finally, In Chap. 7 we approach the
problem of self-oscillations from a stability analysis of the steady-state plasma structure of
Chap. 5.



Chapter 2
FORMULATION OF THE 1-D MODEL

2.1 Model hypotheses and geometry

Geometrical sketches of the thruster and the main features of the model are drawn in Figs.
2.1(a) and 2.1(b). The macroscopic model considers the plasma to be composed by three inde-
pendent fluids: electrons (e), ions (Z), and neutrals (n), and formulates equations for particle,
momentum, and energy conservation of each species.

The channel is cylindrical of length L and has a constant radial area A, (and radial thickness
he); if z is the axial variable, we take z4 = 0 at the anode, and zy = L at the channel exit. The
plume is modeled as a divergent cylindrical jet with a radial area A(z), which will be determined
as part of the solution. Electrons are injected into the plasma plume through a virtual cathode
or neutralization surface (point P) placed at a distance Lgp(= xp — xg) from the channel exit.
The voltage difference between points A and P is the discharge voltage V; = ¢4 — ¢p.

The applied magnetic field is assumed radial

B(z) = B(z)e,, (2.1)

and its strength is such that ions can be assumed unmagnetized whereas electrons are strongly
magnetized, and follow a quasi-closed drift motion across magnetic field lines.

The electron current delivered at the neutralization surface is the discharge current I,.
One part of this current diffuses inwards (into the near-plume and the channel) and ionizes
the mass flow of neutrals, 7, injected at the anode. The other part of the electron current
flows outwards (into the far plume) and neutralizes the ion current; subscript oo will refer to
downstream conditions far away from the cathode. To facilitate this flow of electrons out of the
cathode the voltage profile, ¢(z), is expected to be minimum at point P. The voltage difference
¢ — ¢p > 0 can be interpreted as the cost of the electron emission.

Since the Debye length is generally very small (of the order of 10 — 100um) compared to
the channel length, the plasma is considered quasineutral everywhere except in an electron-
repelling sheath attached to the anode; this is region AB in Fig. 2.1(b), with point B marking
the transition to the sheath. In this sheath, a self-adjusted potential bias,

Gsh = ¢ — P4 > 0,

equates the electron thermal flow collected at the anode to the quasineutral diffusion flow of
electrons across the thruster channel. We consider that only neutral gas is supplied externally

3
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through the anode. Then, since the anode sheath is thin and ion-attracting, ions must flow
into the sheath from the quasineutral region adjacent to the anode. The presence of a region
with reverse ion flow between the anode and the ionization layer is well reported in Refs. [1]
and [5]. The reverse ion flow is recombined at the anode, and re-emitted as neutral gas to the
channel, adding itself to the gas flow supplied externally.

The interaction of the plasma discharge with the lateral walls of the thruster makes the
plasma flow two-dimensional (2D). Instead of tackling directly this 2D problem, which would
require a sophisticated numerical procedure, our proposal is to solve separately two approxi-
mate 1D problems, for the axial and radial directions, and then, to couple them with adequate
parameters and variables. The main 1D axial model will use variables averaged radially, and in-
cludes the interaction of the plasma with lateral walls through source terms for production /loss
of particles, momentum and energy. The 1D radial model must provide the way to compute
these source terms. Of course, this 1D + 1D procedure is not exact but presents the advantages
of (i) to reduce the problem to conservation and ordinary differential equations, (ii) to lead to
a quicker resolution, and (iii) to provide a lot of physical insight.

2.2 Plasma macroscopic equations

From the Boltzmann equation, the three basic macroscopic equations for a given plasma species
(species subscript is omitted) are:
i) Particle conservation,

on

E-FV-’H/UZS. (2.2)
ii) Momentum conservation,
onv
mw+mv- (nvv) = —-Vp+ Zen(E+vAB)+ M. (2.3)

iii) Energy conservation,

9 (lnm'u2 + §nT) +V- (lnmv2 + §nT)'v +V.-q=-V-pv+Zenv-E+Q. (2.4)
ot \2 2 2 2
where: v is the macroscopic velocity; q is the conductive heat flux; S, M, and @) represent
external sources and collisional processes with other species; and other symbols are conventional.
To complete these macroscopic equations, a transport equation for g, and expressions for the
three source terms must be specified.

From the above fundamental equations related equations of interest are:

— Velocity evolution,

mn(%%—v-V)v:—Vp+Zen(E—|—'v/\B)—|—M', (2.5)

with M’ = M — Smw.
— Mechanical energy evolution,

1
n(%+’v-v)§mv2:—'u-Vp+Zen'v-E+U-M—vaz- (2.6)
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— Mechanical energy conservation,

0 (1 1 1
5% (Enmtﬁ) +V. (Enmvzv> =—v -Vp+Zenv-E+v- M — iSmUQ. (2.7)
— Internal energy conservation,
0 (3 3 /

1
withQ' =Q —v-M + ESm'UZ.
— Internal energy evolution,
0 3
0 0.9}
"(at * 2
The set of conservation equations for all plasma species is completed with Poisson equation
for the electric field E or the electric potential ¢,

«V-E=e) Zum, with E=-V¢ (2.10)

T+V-q=—pV~u+Q'—gTS. (2.9)

2.2.1 The 2D axisymmetric equations

Assuming azimuthal symmetry, /00 = 0, and taking into account that the magnetic field
is radial, the equations for the density, the velocity and the internal energy become

aa—TtL + (%nvm + %%nrw =5, (2.11)
mn(% + vac% + UT%>U$ = —ag—mT + Zen(E, — Buvg) + M., (2.12)
mn(%+vx%+vT%+t—r>vg = ZenBuv, + My, (2.13)
mn(%+v$%+m%>vr— 1)73 :—ag—TT+ZenET+M,f, (2.14)
%(gnT) + %(gnnz +¢) + %%r(gnTUT +4q,) — vx(%nT — %%mT =qQ. (2.15)

2.2.2 The approximate 1D axial model

This is defined by assuming plasma variables independent of 7 and including the effects of
radial boundaries as extra source terms in the axial equations. From Egs. (2.11)-(2.15), the
axial equations for the radially-averaged magnitudes (represented with a hat) are

on 0

o+ 5y = S+8,, (2.16)
mﬁ(% + ﬁ$%> by = —a%j + Zen(E, — Biyg) + M + M’ _, (2.17)
mﬁ(% + aﬁ(%)@a = ZenBig + M+ M., (2.18)
%(%fﬁ) + % (gnm + ) — @w%ﬁf =Q'+Q,, (2.19)
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where S,,, M’
the axial model.
In the cylindrical thruster, the convenient radial average for a generic magnitude f seems

to be

]\Zf{ue, Qﬁu represent the wall source terms. Notice that Eq.(2.14) is not used in

A

flz,t) =<rf(r,z,t) >= o 2 5 /rf(fr,a:,t)dr, (2.20)

2— T

where r; and 79 are the inner and outer radius, respectively. Then, the wall-source terms take
the form

Sy=—< %rnvr >, (2.21)
Myy = — < %(rmnvrvz) >, (2.22)
Myp=— < (% + %)(rmnwvg) >, (2.23)
Q. =—< %T(gnT’UT +q) — vT%rnT > . (2.24)

2.3 Collisional processes

We discuss here the different collisional phenomena among the plasma species and the contri-
butions they yield to terms S, M, and @', in Eqgs.(2.16)-(2.19). Wall-source terms, Eqgs.(2.21)-
(2.24) will be discussed in Chap. 4.

2.3.1 The ionization rate

We consider that (i) ionization is produced by electron-neutral collisions exclusively, and (ii)
we neglect double ionization (i.e., Z; = 1). Here we look for an analytical expression of the
ionization source term, which reproduces correctly enough its dependence with the electron
temperature.

The ion production can be expressed as

Si=mnev; v, =n,Ri(T,),

where R;(T,) is the effective ionization rate. Since the dependence of R; on the electron tem-
perature is going to be crucial in shaping the ionization region, it is important to use a correct
expression for it.

Assuming that the electron motion satisfies

ve| < /Te/me, (2.25)

the electron distribution function can be taken local-Maxwellian,

m 3/2 FE
¢ E - ( ; ) N ’
fe(E) wT,) P
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where E is the electron energy. Then, the ionization rate can be written as

8 o0
Ri(T,) = — / o:(E)Ef,(E)dE, (2.26)
me Jo
where o;(F) is the ionization cross-section.
To work with simple analytical expressions, o;(E) (for xenon) is given by

0i(E) = i |1 - exp(E/E: — 1))
(2.27)
E; =121¢eV, 05 =5x 1072 m?,

for E > E;, and 0;(F) = 0 for E < E;; E; is the energy for primary ionization. Figure 2.2(a)
compares this expression with experimental values, showing that it is a good approximation for
electron energies £ up to 100eV, which is the range of interest for a Hall thruster.

Substituting f.(F) and o;(F) in Eq. (2.26), one obtains

R(T) = 5,(T,)c., with &(T,) = ai0(1 + %) exp ( - %) (2.28)

and ¢, = 1/8T./mm,. Figure 2.2(b) compares this expression of 7;(7,) with the one obtained
numerically from experimental values of o;(E). The agreement is very good up to T, ~ 40eV
and satisfactory up to 7, ~ 100 eV. Although it is easy to obtain better improvements with
more accurate expressions of o;(E), we find it worthless for the objectives of the present model.

The ionization frequency can be computed from

Ny, ( T, )1/2 a;

~ X X ——b %334 x 10 s7L.
1020 m—3 ~ \1 eV 5 x 10-2m? >

1%

The neutral density of xenon (m; ~ 2.19 - 1072°kg) follows

m m 10 cm? 300 m/s
= ~ X X x 1.47 x 10"° m™3. 2.29
fom m;Av, ~ 1 mg/s A Un, o (2:29)
For the mass flow, the equivalences
131 gr cm®

1 mg/s = 0.731 amp-eq, 1 sccm ~ — ~ 0.0975 mg/s,

22.41it min

can be useful.
Ionization produces a momentum exchange between ions and neutrals given by

2.3.2 Charge-exchange collisions

Charge-exchange collisions between ions and neutrals produce a momentum exchange given by

Mcz = j:mz-Scm(vz- — ’Un), (231)
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where the charge-exchange source term can be expressed as
Scm = NiVegy, Vexz = NpCinOcy, (232)

with ¢, = |v; — v,| and o, given by|14]

. 2
oy ™ [1 —0.1ln (1 ;I:I/S)} % 8.16 X 10~9m?. (2.33)

Computing the frequency for charge-exchange from

~ Ny « Cin x Ocg
© 1020 m=3  1lkm/s 5 x 107%m?

Vey = x5 x10* s,

one finds that it is a secondary effect which can be neglected in the fundamental model of the
plasma flow.

2.3.3 Electron-neutral elastic collisions
The electron-neutral collision frequency is expressed as
Ven = MipOenCes

with 0., depending on T,. Since these collisions are important only in the upstream part of
the channel we just take
Oen ~ const = 27 x 10720 m?.

Using this average value one has

x 1.78 x 107 s~ L.

~Y
Ve, ™

Ty, ( T. )1/2 Oen
X
1020 m—3 1eV 27 x 10=20 m?2

Since, in general, 0; < o.,, the contribution of ionization collisions to v, is small.

2.3.4 Electron-ion collisions

The electron-ion collision frequency is expressed as|15, 16|

21/2n,Z%*In A Ne

V.; = =
“ 127r3/263m£/2T3/2 (1018m_3

) x (I;V)w x InA x 2.9 x 10° s~ (2.34)

with

a0+ 3 [(P500) (7))

Momentum exchange for ions and electrons is

M = tvemene(v; — ve). (2.35)
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2.3.5 Anomalous electron diffusion

Near the channel exhaust, where the neutral density is low, classical collisions, ve; + Ve, are
insufficient to explain the plasma behavior observed there, which suggests the presence of an
anomalous collisionality. There is controversy about which is the phenomenon responsible
for that collisionality. Some authors[17, 11] suggest electron exchanges at lateral walls, but
experimental datal9, 18] seems to favor Bohm diffusion. Anomalous diffusion due to electron
interaction with lateral walls will be discussed in Chap. 5.

Bohm diffusion is usually included in electron momentum equation by adding to the fre-
quency for classical collisions the Bohm diffusion frequency

VBohm = OBWe,
with
eB B
me  0.01 Tesla

the electron gyro frequency, and ap the Bohm parameter, with a classical empirical value of
ag ~ 1/16. The Bohm diffusion frequency is computed from

W, = x 1.758 x 10° g7 1

VBohm — m X 16(13 x 1.1 % 108 S_l.

2.4 Equations for electrons

2.4.1 Electron current
From Eq. (2.5), the electron velocity field follows

Dw,
mene% ~ —VnT, + en.V¢ — en.v. AN B+ M, + M, , (2.36)

where
D/Dt=090/ot+wv.-V

is the substantial derivative,
M! ~ M, ~ —mn.(vev, — Vev;) (2.37)
is the frictional force, and the collision frequency
Ve = Vep ~+ Vei + VBohm.- (2.38)

includes the different collisional processes; in Eq. (2.37) we assumed v; < v, and ve, v, < VeV,.
The conditions for a quasi-closed, diffusive motion of the electron fluid are

D/Dt € v, < w,. (2.39)

The condition on the left, allows us to neglect inertia effects in Eq. (2.36), which becomes
algebraic for the velocity field,

0~ —VnT, + en.Vo — eneve A B + Mene(—VeVe + Vei;). (2.40)
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This simplifies the problem greatly, since writing

0~ F —n.w, NeB — mgv.n.v,, (2.41)
with

F=en, Vo —VnT, + veimen.v;

the total driving force, we can solve for the velocity field. Using the right condition in Eq.(2.39),
the velocity components satisfy

0 ™~ Welge + Velge, (2.42)
— Fy = MeNe(Welge — Velze) ™ WeMieMeUge, (2.43)
F, =v,m.n, v, (2.44)

where w, is the electron gyro-frequency. These equations show that the dominant electron
motion is azimuthal and is due the F' A B drift, whereas the axial motion is due to the drift
generated by the magnetic field and the azimuthal frictional force. Solving Eqgs. (2.42)-(2.43)
for the axial component one has

Fy
TeUge , (2.45)
melg
with
2
w
~ e 2.46
Va (2.46)

the effective collision frequency for the electron axial motion; notice that v,;m.n.v; can be
neglected in Fj.

More adequate than v; to evaluate the relevance of electron diffusion in the whole plasma
response is going to be the frequency

17d = — Vg = —, (247)

where
eB

MeMm; = 0.01 Tesla

is the electron hybrid gyrofrequency. Estimates of v; can be obtained from

B 2,107 !
Uy = 1.29 x 10% 71, 2.48
v (0.01 Tesla) ( Ve ) X % S ( )

We = x 3.585 x 10% s7!

2.4.2 Internal energy losses

Taking into account that v; < v, and m, < m;, the term for internal energy losses, Eq. (2.8),
can be reduced to

Qle = —Ve- M,e + (Qz + Qea:c)- (249)
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The first term on the right is the Joule heating, which using Eqs.(2.43) and (2.46), satisfies
—Ve - M!, ~ Mene(Ve®? — Vil - 05) ~ MeNeVelp, 2 MeNelgV2,. (2.50)

Tonization losses are

Qi = =Sk,

and (... accounts for excitation energies that are lost by radiation. It is common to group
ionization and excitation losses in a single term proportional to @);:

Qi + Qeze = —04,Q; = —vin.o; Fy,

with «; given by
1 2F;
a;(Te) ~ 2+ 1 &XP 3T,

according to Dugan et al.[19]. [However, in most of this work we will just take o; = const = 2.5.]

2.4.3 Heat conduction

To close the equations for electron dynamics, a transport equation is needed for the heat
conduction term V - q,. The diffusive behavior of the electrons, expressed by condition (2.39)
justifies the following diffusive law for g, [20]

)
EpeVTe +eq, N B+ mer.q, ~ 0, (2.51)

which can be expressed as

€ 5 BTB
a.+ Lq Ne ~ K, VT,  K,=—ee, (2.52)
Ve 2777/61/6
The azimuthal and axial components of g, satisfy
0=~ —Welze — Velge,
5p. OT (2.53)
0 ~ _ € € ,
2me O + WeGge
where from we have the following Fourier-like law for the axial component,
5n.T, 0T,
Qre = (254)

_2meyd Oz
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2.5 Summary of axial equations

Taking into account all the effects discussed above, the macroscopic equations for the axial
dynamics of a weakly divergent jet of quasineutral plasma (n, ~ n;) are

on 10

£ ——(4 eUgi) = Tlel/j Swa
5 + A&c( NeVgi) = Nel; +
on 190

£ ——(4 eUge) = NelV; Swa
5% + Aax( NeVge) = Nels +
on 10

"L (A — 1.
ot + A8$( nnvn) U D Swa
0 190 9
a(mznnvn) + Za_(Amznnvn) = —M;UpNel; + mi(’”zi - Un)neycw - mivnwswa

Tz
2(mnv -)+12(Am-n v2) = —ene— + mivanev; — M (Vg — V) NelVeg + MivS
8t 1've VYT Aam 2'% .’L"L - eax 1vYn've* (A Z n ercxr YT~ w
0 0

0= enea—ﬁ 8—$neTe — VgMeNeUsge,
0 /3 10 3 ov
2 \5 eTe) ——A _Te eUze e | — e( e 2 _Te = - i 1,E1,> ! 5
8t(2n +A(9x (2 NeVge + G ) Ne | VgmevZ, 5~ Vi¢ + Que
oT, 2mlyg

or  bn,T, Qre-
(2.55)

The ion temperature and pressure have been neglected, based on the consideration that the
region of ion production is thin and therefore T; < T,. Inside the channel A(z) is constant
and drops off from Eqgs. (2.55), and the law A(z) for the divergent area of the plasma plume is
derived next.

2.5.1 Plume divergence law

The external plasma plume is considered a cylindrically divergent jet. with the same angle of
divergence, ¢, at the inner and outer boundaries. Thus the radial area, Ax), and thickness,
d(z) = ro(z) — r1(z), satisfy

0 0 2

—InA=—Ind=—tané 2.56

or T or T d Y (2.56)
The simplest approximation|21] would be to assume § = const. Instead, experimental mea-
surements by Pollard and Beiting[22] indicate that what remains practically constant (in the
near-plume) is the radial velocity of expansion of the plume boundaries, which we will call c,.
This suggests a law

Cp

tand = —. (2.57)

(T
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The value for ¢, will be discussed later for each particular model.

Of course, this 1-D model of the plume will be more correct the smaller is the divergent
angle, that is the largest is the relative ion velocity at the thruster exhaust. Also, we expect the
model to be correct only in the near-plume; far-plume profiles are computed with this model
just to estimate the thrust and the thrust efficiency.

2.6 The anode sheath

The Debye sheath attached to the anode (region AB in Fig. 2.1) completes the 1-D model of
the channel and defines two boundary conditions at point B for the quasineutral model. The
sheath is needed to assure the continuity of the electric current from the channel to the anode.
A space-charge field adjusts the potential jump in the sheath, ¢, = ¢ — ¢4, to a value such
that the flow of electrons reaching the anode is equal to the diffusive flow coming from the
quasineutral channel.

In the distinguished limit Ap/L — 0, the problem in the sheath is quasisteady and colli-
sionless. Conservation equations across the sheath are:

Nz = const = (n;Vy) B,
TmvZ; + ed = const = TmvZp + edan,
NeVge = CONSt = (NeVge) A, (2.58)

T.Inn, —ep = const =T,glnn.g — edp,

5 5
nevze(ETe - 6¢) + Qe = const = (EnevweTe + che)A-

Assuming a quasi-Maxwellian distribution with temperature 7, g, the diffusive fluxes of particles
and energy deposited by electrons at the anode are
CeB _e¢sh

(nevze)A = _TneB €Xp TeB )

(2.59)

5
Te _Tenevme) = 2Te NeVge) A,
(e + 3 = MLap(nova)a
with ¢.p the electron thermal velocity at B.

Then, the potential jump across the sheath, ¢,,, and the heat conduction at the sheath
boundary, g¢,.5, satisfy

e¢sh CeB

=1In , 2.60
TeB 4‘,05(263‘ ( )
dzeB _ e(bsh _ 1 (2 61)

nera:eBTeB TeB 2
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The deposition of electrons and ions at the anode produces anode heating, which should be
considered in the evaluation of thruster performances. The heat flow deposited by the electrons
at the anode is

QeA = 2(Tene |vze|)BAc-

Back-flowing ions are accelerated by the sheath and impinge the anode with a large kinetic
energy. In the anode they are recombined and then are re-emitted to the channel with a much
lower kinetic energy, of the order of the anode temperature. The heat flow deposited by the
ions is
Lo 1 2
Qia =~ EmivmiAneB|vm'B|Ac = (imi")m’B + edsn)NeB|VriB| A (2.62)

Thus, the total heat flow to the anode is

) Ce
Qa = Qia+ Qea = TepnepA. [2|vzeB| +(=4+In—E—
6 4|/UzceB‘

The internal structure of the sheath is obtained from the integration of Poisson equation
with the aid of the above conservation equations. Boundary conditions for Poisson equation
are:

i) in the sheath scale, the electric field is zero at the presheath/sheath transition,

d(e¢/Te)
—_— . 2.64
dz/p) |5 0 (264)
ii) pa = 0.
A first integral of Poisson equation is
€0 qu 2 _ .
F(5) =Uled) — Ulesn), (2.65)
where,
U(ep) = neT, + minv>; (2.66)

is known as the Sagdeev’s potential and condition (2.64) has been applied. At point B, the
quasineutrality condition yields

U(6¢)’B = TNep — Ny = 0.

Therefore, for a valid solution to exist around point B, Eq. (2.65) requires

n n,
Ug = eB i sz 2 0’
Tep  muig
that is
T,
2 eB
Vzip 2 m; (2.67)

which is known at Bohm condition. Conditions (2.60), (2.61), and (2.67) are boundary condi-
tions for the quasineutral plasma at point B.

Finally, we point out that a 1-D model of the sheath and the region around it is an idealized
situation, since, in general, the gas is ejected from a small orifice into the channel, yielding a
two-dimensional potential distribution.
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Figure 2.1: Sketches of (a) the Hall thruster and (b) the 1D macroscopic model. B(z) is the
magnetic field profile; V; is the discharge voltage; I; the discharge current; 1 the flow of neutral
gas; [y = nyav,A4, (@ = i,e,n,...) are particle flows of the different species. Surface P is the
cathode (beam neutralizer). For usual operating conditions the following plasma regions will be
identified: anode sheath (AB), anode presheath (BC), diffusion region (CD), ionization layer
(DH), internal acceleration region (HE), near-plume (EP), and far-plume (Poo). Point B is a
singular sonic point for the reverse ion flow and point S is a regular sonic point of the forward
ion flow.
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0;(107%m?)

7;(1072m?)

10° 10

T./E;

Figure 2.2: Individual (o;) and collective (0;) cross-section for single-ionization of xenon by
electron impact; E is the energy of an individual electron and 7, is the temperature of the
Maxwellian electron distribution. Asterisks and circles are experimental values taken from
Refs. [23] and [24], respectively. The dashed line for ; corresponds to the integration of the
(average) experimental points of o;(E). Solid lines represent the analytical fittings given by
Eqs.(2.27) and (2.28) for 0,0 = 5 x 1072°m?.



Chapter 3
BASIC STEADY-STATE SOLUTION

3.1 Governing equations

We make here the following simplifications on the axial model:
(i) steady-state solution: 9/0t =0
(ii) no wall losses: Sy, Q.,., M, =0
(iii) no ion-electron collisions: vg; = 0
(iv) no charge-exchange collisions: v,
(v) no heat conduction g, =0
(vi) The axial profile of the magnetic field is taken Gaussian,

(x — z,)2
B = Be,, B(z)=Bpexp|— 7z ] (3.1)
with B,,, x,,, and L,, constants, and z,, close to zg.
Then, Eqs.(2.55) simplify into
d d d
%(Anevm-) = %(Anevxe) = —%(Annvn) = An.v;,
v, = const,
dvg; do
mivmi% = —6% — ;M (Vgi — Vn), (3.2)
dp d

0 ene% - %neTe = VdMeTeUge,

d 3 dvge 3
vme%(§Te) = _Te;—$ + Ugmev2, — v; (aiEZ- + ETE).

These equations are completed with Eq. (2.57) for the variation of the radial area, a = Ind =
In A + const, in the plume.
Using the particle axial flows of the different species as 'y, = Anyv,,, the mass flow and
the discharge current are written as
Id = eI‘d, Fd = Fz - Fe-

17



CHAPTER 3. BASIC STEADY-STATE SOLUTION 18

Then, continuity equations show that these two magnitudes are constant along the plasma jet
(except for I'y dropping abruptly to zero at the cathode). Notice that 7 includes only the gas
flow delivered at the anode. Another useful equation, derived from Egs.(3.2), is the ambipolar
momentum equation

d 2

—(Am;nev

d
o )+ A—(neTe) = Ane(vimiv, — VgMevge). (3.3)

dzx

i

Finally, important ratios for a discussion of the plasma response are (i) the ratio between
the discharge current and the emitted gas flow,

. miId Fd

" e | - (34)
and (ii) the local ion current fraction,

ni(z) = Ti(z) /T (3.5)

The propellant utilization is defined as 7, = 7. For i > 1 (the usual case in practice) 7, can
be near unity[17]; in this case, i;l coincides with the electrical efficiency Ty, /T'y. However, for
1q < 1, the maximum propellant utilization can be just .

3.1.1 Singular/sonic points

We discuss now the properties of the mathematical model. Solving Egs.(3.2) for the spatial
derivatives we obtain a matrix equation of the form

dY
1-M)—=F(Y 3.6
(1- M) = F(Y), (36)
where Y = (ng, Uy, Te, ...) groups 7 plasma variables, F' is a regular function (different from
the one in the zero conduction model), and M is the isentropic Mach number,
()

M= (3.7)

/5T, /3m;

For instance, the equations for n, and v,; are

dne n G
dr ~ °P’
o (3.8)
de ' “\pP  dz)’
with
3 2 — 2
P = Te - gmivmi = Te(]- - M ),
(3.9)

~ 2 3 3 da
1:.G =G =y gaiE,- +T, — gmivwe(%m- — V)| — vgmev2, + gmivﬁivwea.
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Therefore, the spatial problem may present singular points where the Mach number is equal
to -1 or +1. The definition of an ion Mach number is natural to the macroscopic approach
adopted to describe plasma dynamics. It characterizes the propagation of pressure perturba-
tions, and clarifies, therefore, the interpretation of the steady and unsteady plasma responses.
Sonic points are reqular or singular depending on G being equal or not to zero at them. In a
singular sonic point the derivatives of all plasma variables become infinite, so it is a turning
point of spatial profiles. These points are admissible only at the boundaries of the quasineutral
channel. On the contrary, in a regular sonic point the ion flow changes smoothly from subsonic
to supersonic, like in the classical problem of a convergent-divergent nozzle. The expansion of
the ion beam from the channel into the rarefied ionosphere implies that the ion flow will be
sonic or supersonic at the channel exit (point E). Therefore, a forward sonic point —point S
in Fig. 2.1(b)- with Mg = 1 is always expected in the channel. For a choked exit, point S is
singular and coincides with point E. For a supersonic exit, point S is regular and its position
within the channel must be determined as part of the solution.

3.1.2 Boundary conditions

The integration of Egs. (3.2) between points B and P require seven boundary conditions, which
are distributed between points B, S, E, and P~. Taking into consideration the singular points,
the sheath conditions discussed in Sec.2.6 and the parameters that are controlled experimentally,
a natural set of boundary conditions is the following

i)-ii) The externally supplied mass flow rate 7 and the neutral velocity v, 4 are known.

iii) The electron temperature at the cathode, T.p, (of the order of the electron emission
temperature) is known.

iv) The discharge voltage V; = ¢4 — ¢p is known.

v) The quasineutral solution in the channel requires that —Mp < 1 [were —Mp > 1, there
would be a point within the channel with M = —1 and G = 0, which is not possible, as
the solution will make evident.] On the other hand, the Bohm condition (2.67) at the sheath
entrance states that —Mp > 4/3/5. Here, we will assume that the sheath transition occurs at
the singularity of the quasineutral solution, that is

vi) The voltage difference at the sheath satisfies Eq. (2.60). (Placing the arbitrary origin of
¢ at point A, one has ¢p = ¢, and ¢pp = —V;). Using Eq.(3.10), Eq.(2.60) becomes

edsh i 3m;
—1 ( \/ ) . 311
T.s "\ V10mm, (3.11)

vii) For the supersonic erit regime, sonic point S is regular:

GS =0 at MS =1. (312)
Instead, for the choked exit regime we set that the flow at point E is sonic:

Mg =1. (3.13)
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For the velocity of radial expansion in the plume, Eq. (2.57), we make the choice

/5TeE

Apart from Vy, m, and T,p, other input variables are v,4, L, Lgp, A. and the profile of the
magnetic field, Eq.(3.1). The main output variables of the model are the discharge current I,
the relative ion reverse flow 7;5, the position zg of the sonic point S (for a supersonic exit), the
plume divergence profile, the thrust, and the thrust efficiency.

The continuation of the solution from point P to oo is straightforward. It just requires us
to modify the electron current at point P*, setting I'/, = T';p, in order that the net electric
current in the plume far-field be zero.

3.2 Types of solutions

It is convenient to use dimensionless variables and parameters to integrate the equations and to
characterize the solutions. Three magnitudes are enough to nondimensionalize Eqgs.(3.2). The
energy T, = Ej, the cross-section o, = oj0(m;/me)"/?, and a typical particle flow I, are the
best choice. Then, magnitudes related to these three are

Ve = A/ Tu/miy, n.=T./Aw,., L=1/n0. v.=u0./l.

When necessary, dimensionless magnitudes will be represented by an over-tilde over the respec-
tive dimensional ones. We omit to write down the dimensionless form of plasma equations,
which is immediate.

The dimensionless form of Egs. (3.2) is integrated as an initial-value problem with a Runge-
Kutta algorithm. We focus the discussion here in the region between points B and P, the
continuation to the far-plume being straightforward. The use of the auxiliary variable ¢, defined
by

dx/d¢ = P,

instead of x, avoids unnecessary numerical problems in reaching or departing from singular
sonic points, like point B. However, this does not solve the crossing of regular sonic point S
in the supersonic-exit regime. A Taylor expansion of Egs. (3.2) is needed to determine the
derivatives of the plasma variables there; the details of that expansion are omitted here.

Due to the character of point S, the less time-consuming procedure is clearly to integrate
from the neighborhood of point S towards points B and P separately. At point B, the integration
stops where condition Mg = —1 is reached; at point P, it ends where 7" = Tgp. This initial-
value procedure requires setting all variables at point S. For the choked-exit regime, this implies
taking output parameters 7;s, ¢4, and T.s as initial parameters, while input parameters Vy, Z4,
and Zp are outputs of the integration. For the supersonic-exit regime, output parameters 24,
7is, and Tg are used as initial parameters, and Teg comes from condition Gg = 0; as before,
input parameters Vy, 74, and Zp are outputs of the integration. A subsequent iteration is
needed to adjust these input parameters to their desired values.

In addition, not all sets of ’initial parameters’ lead to valid solutions. A first restriction
to these parameters comes from the condition that the plasma flow be accelerating at point
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S: dvgi/dz|s > 0. For a supersonic-exit solution this means choosing the appropriate set of
derivatives from the two solutions given by the Taylor expansion. For a choked-exit solution it
reduces the region of valid parameters to those satisfying

Gy >0 and G§ <0 (3.15)

observe in Eq. (3.9) that the difference between G§ and Gy is due to the term containing
da/dz o (tand)/d.

A second restriction to ’initial parameters’ at point S comes from the fact that there are
solutions departing from S~ towards B, which never reach a negative ion velocity and finish
instead in a singular point with M = +1. These solutions are disregarded since they have no
physical meaning for the plasma in a conventional Hall thruster. The limit condition I';5 ~ 0
is going to be very important since it is going to indicate a real physical condition for the
disappearance of steady solutions.

Figure 3.1 illustrates, in the parametric plane (T,g,7;5) and for two values of iq, Eq.(3.4),
the different solutions that are obtained from the integration between points S and B. Four
parametric regions are found: region 1, with Gy < 0, and region 2, with G > 0 and 7,5 > 0,
are forbidden regions for the reasons exposed above; region 3, with Gg > 0 and ;3 < 0,
corresponds to the choked-ezit regime; and (line) region 4, with Gs = 0 and n;5 < 0, corresponds
to the supersonic-exit regime. For the choked-exit regime, the continuity of the solutions into
the plume requires that G& < 0, Eq.(3.15). Figure 3.1 depicts the limit line G& = 0 for two
values of (tan d)/d.

For 7, = 1.25, region 4 of supersonic-exit solutions consists of high and low ionization
branches. The low-ionization branch yields propellant utilizations well below 50% and corre-
sponds, then, to inefficient thruster operation. Since, in addition, it does not lead to different
plasma dynamics than the high-ionization branch, it will be disregarded hereafter in this pa-
per. The high-ionization branch is actually a near-total ionization branch and corresponds to
the near-complete ionization mode referred by Morozov et al.[17]. Notice that, since n;s ~ 1,
point S must be placed near the downstream end of the ionization layer (point H in Fig. 2.1).
As i4 increases from 1.25, the line 7,5 ~ 0 (separating regions 3 and 4 from region 2) moves
left, towards lower T.s, and region 2 disappears eventually (at iz ~ 1.65 for the case of Fig.
3.1). For the same reason, as i; decreases from 1.25 the line 7,5 ~ 0 moves right and restricts,
in particular, the domain of supersonic-exit solutions with large ionization. For iz < 1, two
features are to be pointed out: first, the high-ionization branch of the supersonic-exit regime,
instead of approaching the asymptotic line I';s = Ty (i.e., ms = iq4), disappears; second, the
line n;5 ~ 0 forbids choked-exit solutions with large ionization and moderate temperatures.

The presence and characteristics of the two supersonic-exit branches can be explained from
the analytical expression of Gg = 0. From Eq.(3.9), that condition yields

3I; 2I'y — I';s) T, 2/5)s0u; E; U

31, 1) B i leo + @ sl v, (3.16)
5T, Tes(g — Tig)? v;

with 7y = vgme/m; and vf = ny,aR;(T.s), and this last magnitude is of the order of the

maximum ionization frequency in the channel. Then, for plasmas satisfying

Vis K l/;, (317)
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it is readily seen that Eq.(3.16) is verified by two types of solutions: the low-ionization branch
with I';s < T',,; and the near-total ionization branch with I';¢ ~ T',,, which exists only for
Lg>T,,.

In conclusion, we have shown that a regular sonic point (with no discontinuity in plasma
derivatives) may exist inside a channel of constant area in a natural way by compensation of
diffusion and ionization effects. This implies that the sonic point is within or close to the
ionization layer. The position of the sonic point is not set a priori, it depends on the control
parameters and is part of the solution of the problem. Regular sonic transitions were also
discussed by Fruchtman and Fisch[10]. In addition, they suggested forcing a choked internal
point by introducing a current discontinuity; thus, their solution matches two choked flows
(with G5 > 0,G& < 0) at the prescribed discontinuity point.

3.3 Structure of the plasma flow

The preceding section has shown that supersonic-exit solutions with 7; moderately above 1
seems to be the most efficient operating regime of a Hall thruster. The results we show next on
the plasma structure and the thruster output parameters will confirm this. These results are
presented in dimensional form to facilitate the comparison with real experiments.

Figures 3.2(a)-(i) show spatial profiles of the main plasma variables for a supersonic-exit
solution and geometrical and operational parameters typical of a SPT-100 thruster|25]; all
parameters are listed in the figure caption. We observe that the structure of the plasma response
can be divided into the six regions sketched in Fig. 2.1(b). The first significant feature is that
the ionization region is placed in the middle of the channel, more or less between points D and
H, which can be defined as the places where v,; changes sign and 7T, is maximum, respectively;
this yields zp ~ 13.6 mm and zg ~ 17.4 mm, with T,z ~ 91.3 eV. Notice in Fig. 3.2(b) the
peaked shape of v;(z). The point of maximum electron pressure, p. = n7T, is at £ ~ 14.1mm,
very near to the proposed entrance of the ionization layer. The sonic point S is downstream
of point H (zg ~ 19 mm) and the temperature there (T,s ~ 89.6 €V) is close to the peak
temperature; notice that point S cannot be far from point H since the ionization terms are
needed to define the crossing condition Gg = 0, Eq. (3.16).

Upstream of the ionization layer is the large diffusion region (region CD), characterized by
a reverse, low-velocity ion flow, a low electron temperature (~ 2eV), an insignificant electric
field (pc — ¢p ~ 1 V) and a quasi-linear pressure gradient as the force driving the electron
diffusion. The relative value of the reverse ion flow is |7;5| ~ 0.24 (of the order of the one
measured in Ref. [1]). Tied to the anode, there is the anode sheath (region AB) characterized
by a potential jump ¢, ~ 3.8 V and a negligible thickness in the channel scale (zg ~z4 =0
for A\p/L — 0.). The anode presheath (region BC) is a transition region between the sheath
and the diffusion region, where the reverse ion flow is accelerated to meet the Bohm condition
at the sheath entrance; it is rather thin (z¢ — z5 ~ lmm) and observable in Fig. 3.2(f) only.

The sharp transition from the diffusion region to the ionization region is related to the
exponential dependence of the ionization cross-section on the electron temperature 7, as we will
further comment on below. The large value of T, in the ionization region — and its low value in
the diffusion region— are consequences of excluding the heat conduction and the losses to lateral
walls. The electric potential remains practically constant until well inside the ionization layer,
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then it starts decreasing; the total potential variation across the ionization layer is ¢p — ¢y =~
51.4 V.

Downstream of the ionization layer there is the internal acceleration region (region HE),
where the ion flow is accelerated by the electric field. The potential decrement in this region is
¢g — dr ~ 91.0 €V and the temperature at the channel exhaust is still large (T.g ~ 65.3¢V) so
the effects of the electron pressure are significant there still. The plume is the extension of the
internal acceleration region. The form of the plume profile shown in Fig. 3.2(b) comes from
the solution for A(x) in Eqs.(3.2). The semi-angle of divergence is maximum at the channel
exit, 0g ~ 32.3°, but it does not change much since most of the increase of the ion velocity
took place inside the channel; the typical range of § in experiments|26, 27| is 30° — 40°. In
the near-plume (region EP) the radial area increases from A = A, ~ 45 cm? to Ap ~ 76
cm?. The potential variation in the near-plume is ¢g — ¢p ~ 150 V, about 53% of the total
discharge voltage. The minimum of the electric potential at the cathode (point P) provides the
electric field required to move the electrons into the beam. Indeed, the potential variation in
the far-plume, ¢, — ¢p ~ 34.8 V, can be considered as a part of the energy loss associated to
the cathode.

There are two 'free’ parameters in the solution of Fig.3.2: Lgp and ag. The first parameter
seems to affect weakly the plasma response except when it becomes too small. On the contrary,
the plasma response is very dependent on the value of the Bohm parameter. In fact, the
best fit with experimental results is obtained with 16ap ~ 0.2 instead of the classical value,
16ag = 1. For the chosen value of ag anomalous diffusion becomes dominant only downstream
the ionization region, as the quick change in the derivative of v; around point D, in Fig.3.2(i),
illustrates.

The plasma structure for a choked-exit solution is very similar to the one presented here
except that (i) ionization might not be near-total, (ii) the region of supersonic acceleration is
totally external, and (iii) the plume divergence is large. Indeed for practical values of h/L, the
condition G = 0, depicted in Fig.3.1, leads to divergence angles above 45°. Clearly, the 1-D
plume model is hard to apply there. This consideration and the fact that the experimental data
fits in general well with supersonic-exit solutions makes advisable to continue the investigation
of choked-exit solutions.

3.4 Thruster performances

Looking again at the case of Fig.3.2, we show now that the main output parameters for thruster
performances agree rather well with experimental values|25]. The discharge current is I; ~ 4.36
A (versus 4.5 A experimentally) The thrust, computed at the channel exhaust as

F =mi(Tivs)E + (PE — Poo) Ac, (3.18)

is F' ~ 92.8mN (versus 82 mN experimentally). The thrust efficiency, defined in the usual way
as

n = F?/2mI;Vy, (3.19)

is n ~ 63% (versus 52% experimentally, excluding cathode flow). Energy losses neglected in
this model will reduce somehow these two last magnitudes. It is interesting to measure how
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different phenomena affect the thrust efficiency. This can be factorized as

n= ﬂchne’f)p; (320)

with 7, = 7 the propellant utilization, Eq.(3.5), n. = 1/ig the current efficiency, 7. =
m;v2;./2eV the energy efficiency, and 7, = e the plume efficiency, this last one split
into the cathode efficiency: 7, = Viao/Va, and the divergence efficiency: n,q = F?/F2, with
Foo = mi(T'ivzi)oo- For the case of Fig. 3.2, one has, first, that the propellant utilization and
the energy conversion are practically total: 7, ~ 100%, and 7, ~ 99.3%. Efficiency losses are
distributed among the other three contributions: 7. ~ 88.7%, 1, ~ 88.1%, and 7,4 ~ 81.1%.

The present model does not consider the gas spent in the cathode for electron emission,
which amounts to a 5-10% of the total gas flow, typically|26], and most of it (above 90%) is
ejected into the plume without ionizing. On the one hand, this gas flow contributes as a loss
to the thruster efficiency; on the other hand it is responsible for charge-exchange and backflow
effects in the plume.

3.5 Asymptotic analysis

We derive here approximate solutions for the different plasma regions that explain most of the
features observed in the exact solution studied in the preceding section.

Since ionization is limited to a thin layer, the zero-ionization form of the plasma equations
will be applicable to most of the plasma flow. Making v; — 0 in Eqs. (3.2), one has conservation
equations for particles, ion energy and electron enthalpy,

[, =const (a=1,e,n), (3.21)
m;v2;/2 + ed = const, (3.22)
5T, /2 — e¢p = const. (3.23)

To avoid integral terms with the electron diffusion frequency and simplify thus the analytical
expressions, we will use, instead of a continuous function, two constant (i.e., average) values:
Vg = Vg, for the whole back-flow region AD, and v; = v4, for the whole acceleration region
DP.

We proceed to integrate Egs.(3.2) from point B (with zp ~ z4 = 0, Mg = —1) towards
the cathode P. To neglect ionization in the rear part of the channel we assume that 7,5 < F;.
Then, from Egs.(3.21)-(3.23) and (3.3) the ion velocity satisfies

Vi NeB

2
- 21+i—\/<1+£> ~1, (3.24)
VziB Ne Zc o

where vy = —4/5T./3m; and

_ 8m;|vgip| Lip

5 Mmelgo 1-‘eB
is the characteristic thickness of the anode presheath. Observe that zo tends to zero with I';5.
The diffusion region corresponds to z > z¢. From Eq. (3.24), the asymptotic behavior of
the ion velocity is
Vgi[VziB =~ Tc /22 — 0.
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The plasma temperature and the voltage also tend to constant values,
T. — Tec = (4/3)Te, ed — epc = edp + (5/6)T.z, (3.25)
so the electric field tends to zero. On the contrary, the electron pressure increases monotonically:
Pe = Pe + |Ue/Aclmevao, (3.26)

and provides the driving force for the electron axial motion in the diffusion region. Since
T, ~ const, the plasma density changes in the same way as the pressure. Weak electric fields
and nonzero density gradients upstream of the ionization layer are confirmed by experiments|1].

The transition to the ionization region (around point D) requires the inclusion of small
ionization effects. The evolution of 7, there is governed by the exponential dependence of the
ionization rate on T,, for T,/F; < 1. Keeping d¢/dz ~ 0 and using Eq.(3.26) for p., the
electron temperature in this transition layer satisfies

dT, T, + o B d
Ny M Vg T AT
Ry(T.) T, °
(&; = 204/5), and its approximate solution is
273
2 2 e
~ T2 3.27
! AP (T, + & E;) Exmevaona Ri(T.) (3.27)
with
2772 T,
L2, ~ == « ¢ (3.28)

AD — ~ 2 .
o, EY mevgvic

Equation (3.27) yields T,(z) implicitly, showing a large gradient around 7,/E; = O(1), where
the ionization rate R;(7T,) increases sharply. This justifies that Lap, as defined by the two last
equations, is effectively the length of region AD. Equation (3.28) shows also how the position
of the ionization layer is influenced by different factors. The pressure satisfies Eq. (3.26) up to
the ionization layer and, setting its maximum around point D, one has

PeD = |FeB/Ac|meVdOLAD- (329)

The plasma density, obtained from p./T,, gets its maximum before point D, due to the fast
increase of T,.

A complete analytical solution for the ionization layer is not available, but there are several
useful expressions relating point D and point S (just downstream of point H, as we commented
on previously). Conditions v,/v.s < 1 and (3.17) are enough, generally, to neglect electron
diffusion in the bulk of the ionization layer, and the right-hand side of the ambipolar momentum
equation (3.3). Then, one has

minevzi + De X PeD;,

across that layer. Particularizing at point S and using Mg = 1 we obtain two relations,
3 _ 5P§SA3

eS — S PeD, Te - 5
Des SPD S 3ming

(3.30)
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and I';¢ ~ T, for a supersonic-exit solution. From Egs.(3.2) and (3.29), the estimated thickness

of the ionization layer is
Vzis _ MelVdo

Lpg ~ Lps ~

i

and Lps < Lp, as expected. From the equation for ion momentum in Egs.(3.2), the potential
jump across the ionization layer is

) s )
epp — epg ~ 6 eS T mz/ VgiVdx = (1 + (Si)ETeSa (331)

D

with parameter §; small (~ 0.10) in the cases we have analyzed.

In the acceleration region and the plume of a supersonic-exit solution, there are practically
no neutrals to ionize and Egs.(3.21)-(3.23) are applicable again. For T,p < T.s and 75 ~ 1
one finds

Ugip = 20455, eps —epp =~ (5/2)T,s. (3.32)

The area variation in the plume frustrates an exact integration of Eq.(3.3). Nevertheless, an
approximate integration, useful to evaluate the influence of different parameters, is
3(Cy —Typ)

= meVa1 Lsp,

Des = 24

with A an average value of the the radial area of the jet. This completes the analysis on the
different plasma regions.

3.6 Influence of control/design parameters

We restrict the discussion to supersonic-exit solutions. Before showing exact numerical results,
let us use the preceding asymptotic analysis on the plasma behavior, to obtain an approximate
idea of the scaling laws among the the thruster parameters. Since that analysis corresponds to
a rather ideal situation (no losses to lateral walls and no heat conduction) some laws must be
taken with prudence.

First, adding the potential jumps in the different regions [Egs.(3.25), (3.31), and (3.32)],
one has,

) 20 + 56;

qVa+qésn =~ “Tep +

Tes; 3.33
. T (3.33)

observe that the potential discharge in the acceleration region is about three times that of the
ionization region. Next, keeping only dominant terms, the maximum plasma temperature turns
to be proportional to the discharge voltage,

TeH ~ TeS >~ (3/10)6Vd

This law agrees well with the numerical results of Fig. 3.2, which indicates that the overestimate
of the maximum temperature is intrinsic to the present model. Therefore, energy losses at
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lateral walls and heat diffusion cannot be excluded in order to estimate correctly the plasma
temperature.
From Eq.(3.32) and for Lgp — 0, the thrust, Eq.(3.18), satisfies

F o~ 1y 2qVa (3-34)
m;

From Eq.(3.30), the maximum pressure in the channel verifies

8 4F

gpes = A,

Pep = (3.35)

The mean temperature in the diffusion region is T,c ~ (4/3)T.p. From Eq. (3.28), one has
Tec o In~" (n2Vamn/vy). (3.36)

From Eq.(3.5), the length of the acceleration region verifies

. 1 [qV
Lopr~ —t __—  [97¢ (3.37)
(1 — nc) 5l/d1 ms;

Lsg ~ \/qVi/mvav;,

proposed by Erofeev and Zharinov (cited in [5]). Adding Lgg to Lap, deduced from Eq. (3.29),
one has

which differs from the law

dn. [qVy [ Vdo }
L~ 14— | 3.38
olgo V My 4(1 = no)va (339

which is an implicit equation for 7.

Figures 3.3 to 3.8 show the effects of V;, m, B,,, L, Lgp, and ag on the plasma response
and the thruster performances. These plots have been obtained from continuation routines,
departing from the solution of Fig. 3.2. The main remarks are:

1. The thrust depends on the gas flow and the discharge voltage, and follows rather closely
Eq.(3.34), which is in good agreement with experimental data.

2. Contrary to the thrust,the efficiency n depend on (and increase with) the channel length
and the magnetic field. The increase with B,, agrees well with experimental data [5].
However, experiments indicate often that 7 presents a maximum with L, instead of the
monotonic behavior found here; losses at lateral walls, which seem to increase with L,
would explain the difference.

3. Since the energy and ionization efficiencies are practically total (7,7, ~ 1) in our model,
the variation of the thruster efficiency depends basically on 7, and 7,; notice also that 7,
is a dimensionless representation of the inverse of the discharge current, 1/1,.
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4. Contrary to common ideas, the distance from the ionization layer to the thruster exhaust
depends more on V; and L than on the magnetic field profile and strength. For usual
conditions, the ionization layer is placed in the outer half of the channel, and never next
to the anode. This is consequence of the role of the electron pressure on the plasma
response.

5. The average temperature in the inner part of the thruster, T.c, depends mainly on 7 and
L. In our model, possibly because of the zero heat conduction, this temperature is too
low.

6. Except m, the rest of the control parameters affect significantly the relative reverse flow
of ions, 7;5. Experimental data on the ion flow in the deepest part of the thruster is
difficult to obtain. Few experiments have identified the existence of a reverse flow and
we did not find anyone that measures the changes in the reverse flow with the control
parameters.

7. There is an indirect experimental confirmation that our predictions on the reverse ion
flow are correct. Our model predicts that stationary solutions fail to exist when the
plasma cannot sustain a reverse ion flow; this corresponds to points with 7,5 ~ 0 in the
Figures. If we take, for instance, the case of Fig. 3.5, where the magnetic field strength is
varied, we observe that there is a maximum value of the magnetic field for a steady-state
solution. This is exactly what happens experimentally: strong oscillations appear when
the magnetic field becomes too high; see, for instance, Fig. 3 of Ref.[5]. We come back
to the limit 7;5 ~ 0 below.

8. A parameter difficult to choose is the position of the virtual cathode, Lgp. Figure 3.8
shows that the position of point P affects more the thrust and the efficiency, when Lgp
becomes small. The two efficiencies involved in the plume, 7, and 7,., behave in an
opposite way with Lgp, 7, decreasing with Lgp. Although this issue requires further
analysis, it would seem desirable to choose Lgp in the range where it affects the least the
thruster performances.

9. Figure 3.7 shows that ap affects strongly the reverse ion flow. If we want to keep a low
value for that flow, there is no much tolerance in the value of a g, unless other parameters
are changed simultaneously.

The evolution of 1 and 7;p with B,, and L, seems to indicate that optimum operation
conditions correspond to very low reverse flows. But operating the thruster in these conditions
has the drawback of that a small change in any control parameter can lead the thruster response
into the non-stationary regime. This scenario seems to be the one taking place in practice: the
thruster is operated near the limit of the stationary regime and there appear periods of a
strong oscillatory response. If this is the case, the observed oscillatory response would not
be due to a plasma instability. For given B(z) and L, stationary solutions fail to exist for
low discharge voltages because the plasma temperature is too low to produce enough ions to
maintain a supersonic region downstream of the ionization layer and quasineutrality upstream
of it. Longer channels and higher magnetic fields mean larger plasma pressures and steeper
profiles which can be sustained steadily only by higher voltage discharges.
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3.7 Discussion

The preceding results show that the basic axial 1-D model proposed in this chapter reproduces
correctly the whole structure of the plasma in a Hall thruster: diffusion region, ionization
layer, acceleration region, and near-plume. Although the main objective of the model was to
understand the plasma behavior in the thruster, quantitative results for output parameters
like thrust, efficiency, and discharge current agree well with experimental cases, which adds
reliability to the model.

Attention has been paid to identifying the main phenomena that control the plasma re-
sponse. We summarize the main aspects here, since previous models omit one or another.
First, there is the dependence of the ionization rate on the electron temperature: the strong
gradient of R;(7.) around the ionization energy separates rather sharply the ionization and ac-
celeration regions from the diffusion region and leaves this last region with a low temperature.
Second, we have shown that a reverse ion flow is forced by physical conditions around the anode:
solutions with v,; > 0 at the anode boundary are not compatible with an ion-attracting sheath
and therefore do not satisfy the condition of current continuity there. Since the ionization layer
starts around v,; = 0, the slow reverse ion flow is necessary to sustain the long diffusion region,
also. The third and main aspect to emphasize is the crucial role of the electron pressure in
all plasma regions: i) the pressure term explains the subsonic to supersonic transition of the
ion beam; ii) the electron pressure is the only driving force for the electrons in the diffusion
region, where the electric field is practically zero; iii) the pressure drop, instead of the diffusion
losses, balances the gain in ion momentum in the ionization layer; iv) the maximum pressure
is a central parameter controlling the position of the ionization layer.

Boeuf and Garrigues|11], in spite of neglecting the electron pressure, recovers a zero-electric
field upstream the ionization region, by making the B-field (and, therefore, the diffusion fre-
quency) negligible there. From our preceding conclusions we find their solution debatable on the
following grounds: i) such a small B-field, which does not correspond to usual settings, violates
the closed-drift condition sustaining the diffusive model of the electrons; ii) they neglect the
pressure term in the momentum equation in spite of being much larger than the electrostatic
force; and iii) the compression work is kept, however, in the energy equation.

The existence of a regular sonic point inside the thruster is not just a mathematical artifice.
Physically, it implies the local balance between Ohmic heat dissipation into the electron gas and
heat removal from it by ionization. The latter effect is strongly dominant near the ionization
peak, whereas dissipation, although weaker, dominates outside the layer. Hence, the sonic bal-
ance can only be struck at a point where ionization has nearly ended or has just barely started.
The second option is precluded by the fact that there is no mechanism ahead of the ionization
layer that would provide the potential drop to accelerate the ions to their forward speed of
sound. There is an interesting analogy between this ionization layer and the shock/combustion
layer in a strong detonation front. In both cases, the downstream exit point of the layer is found
to be sonic, although, of course, the layer inlet is supersonic in a detonation and subsonic in the
ionization layer. The underlying mechanism is the same in both problems, the condition of a
smooth sonic passage here being equivalent to the Chapman-Jouguet condition in combustion
fronts, which states the local balance between the chemical heating and the heat diffusion. One
interesting conclusion, valid for both, detonation and ionization layers, is that the occurrence of
this ’"Chapman-Jouguet condition’ is a consequence of the smallness of the ratio of two kinetic
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rates, and will only be as precise as this ratio is small.

A relevant conclusion, not fully investigated yet, is that the presence of a reverse ion flow
seems essential for the existence of stationary solutions, the zero-reverse flow condition indi-
cating the transition to some non-stationary type of solutions. The parametric investigation
on the effects of the main design parameters (discharge voltage, magnetic field, channel length,
mass flow,...) on the thruster performance indicates, for instance, that the excessive magnetic
field eventually suppress the reverse ion flow and make it impossible to maintain steady-state
quasineutrality in the diffusion region, in agreement with testing experience.

Another issue requiring further research is whether the transition from the complete to the
incomplete ionization modes|17| corresponds to the transition from the supersonic-exit to the
choked-exit solutions, or, on the contrary, from the high- to the low-ionization branches of
supersonic exits.

The main flaw of the present model is the extremely high peak temperature. We will try to
improve this issue in Chapters 5 and 6 by including plasma interaction with lateral walls and
heat conduction, respectively into the electron energy balance.
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Figure 3.1: |gcerotit] Regions leading to different types of solutions between points S and
B for two values of 74 and a constant B-profile. Line a corresponds to G = 0; line b to
nig — 0; lines ¢ and d to G§ = 0 for J/ tand = 0.3 and 0.1, respectively. Region 2 is between
lines a and b; region 4 (supersonic-exit regime) corresponds to the thick parts of line a, to
the right of the intersections (asterisks) with line b. Some parameter values are: T', = T,

We [V, = 84.64/m; /M, Tna = 0.1, a; = 2.5, and ap = 1/80.
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Figure 3.2: |basetit] Supersonic-exit solution for: xenon, B(z) as shown in (a) [B,, ~ 233G,
Tm =~ 20.3mm, L,, ~ 20.2mm]|, the channel geometry shown in (b)[L ~ 25mm, h, ~ 17.2mm,
A, ~ 45cm?) Lpp ~ 25mm)|, h ~ 5.32 mg/s, V; ~ 293.3 V, T,p ~ 2.7 €V, v, ~ 300 m/s, and
ap =~ 1/80. The profile of the plume in (b) is part of the solution; subplot (f) is a magnified
copy of subplot(c) for region AS; asterisks represent points S, E and P; and 73 = (m./m;)y, in
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Figure 3.3: Influence of the discharge potential on the plasma response. Other parameters are
as in Fig. 3.2.
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Chapter 4
THE RADIAL MODEL

4.1 Introduction

The walls of the discharge channel of the SPT class of Hall thrusters is made of a ceramic
insulator. The interaction of the plasma with these dielectric walls seems to affect greatly
the plasma discharge and the thruster characteristics|28, 29, 12, 30|. From simple reasoning
several phenomena are expected. First, the zero current condition at the dielectric wall im-
plies, in general, the formation of an electron-repelling sheath there. Second, ions attracted
to the walls are recombined, thus reducing the actual propellant utilization and the thruster
efficiency. Third, energetic electrons arriving at the wall deposit their energy there, affecting
the average temperature of the plasma in the channel and, consequently, the ionization pro-
cess. Four, ceramic materials present large yields for secondary electron emission. On the
one hand, these electrons modify the sheath structure, which could attain charge saturation
conditions[31, 32]. On the other hand, since these electrons are replacing primary electrons,
which were magnetically-guided, an extra near-wall conductivity for the average electron pop-
ulation has been suggested|33].

4.2 Presheath/sheath model

Here we analyze the radial structure of the plasma in a fixed axial position of the thruster.
Fife, Martinez-Sanchez, and Szabo[29] were the first to obtain consistent expressions for the
particle, electron momentum, and electron energy wall-source terms by studying the behavior
of the space-charge sheaths around the lateral walls; the effect of the potential drop in the
radial presheath was added later by Ahedo and Martinez-Sanchez[12].

More recently, Stephens and Ordonez [31] and Jolivet and Roussel|32] have shown that large
enough secondary emission yields these radial sheaths can charge-saturate the radial sheaths,
a situation not considered in the previous models and with important consequences. Both
Refs. [31] and [32] (i) use a particle approach (either kinetic equations or particle-in-cell for-
mulations), and (ii) force thermalization of the secondary emission at an artificial ’edge plasma
source’, placed at the center of the channel cross-section. Our model adopts the two-scale (i.e.
asymptotic), macroscopic framework already used in Ref.|[12], and includes trapped secondary
electrons as a part of the confined electron population in the bulk of the plasma. In addition,

39
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our model includes diffusion effects on the ion radial motion, due to collisional processes and the
axial ion transport. The validity of the macroscopic approach for a similar problem was shown
in Ref. [34]. With respect to kinetic models, a macroscopic model presents the advantages
of: (i) following directly the evolution of macroscopic variables (like density, velocity, ...), and
(ii) being more tractable since it solves ordinary differential equations, exclusively, instead of
integro-differential ones.

Figure 4.1 sketches the radial model. Macroscopic variables are functions of r, and the axial
position z appears just as a parameter in the equations. To highlight the fundamental aspects of
the solution, cylindrical effects are neglected in the present version; thus the radial structure is
symmetrical with respect to the middle-plane (point M in Fig. 4.1). In principle, the potential
profile is assumed monotonic (in each half-channel); the transition to a charge-saturated regime,
with local minima of the potential, will be investigated afterwards.

The model is supported on three main hypotheses:

(1) There are two disparate scales on the radial profile of the electric potential: the Debye
length A4, and the channel radial width d, with

Ad K d.

As it is well known from the seminal work of Tonks and Langmuir[35], this justifies a two-scale
analysis, where, except for the two thin non-neutral sheaths tied to the lateral walls, the bulk
of the plasma is quasineutral (the radial presheath). The electron-repelling sheaths are needed
to satisfy the zero-current condition at the walls.

(2) Secondary electron emission is due mainly to the diffusive radial flux, g,, of primary
electrons (population p) reaching the walls. As noticed in Ref. [32], the secondary electrons can
be classified into those becoming trapped in the channel and eventually thermalized (population
s), and those crossing the presheath (in both ways) and being collected back at the opposite
wall (two free populations f). The present study is restricted to the total trapping case, with
no free populations.

(3) A consistent treatment of the s-population is the major challenge of the model. Sec-
ondary electrons flow continuously from the two walls and are expected to thermalize through
multiple reflections at both sheaths. Therefore, in the bulk of each cross-section (i.e. the
presheath, basically) there are trapped electrons with different time histories, and any station-
ary model must figure out which is the mean collective distribution in time of this process. Our
proposed model consists of: (a) treating primary(p) and secondary(s) electrons as independent
populations within each sheath; (b) to group all electrons into a single electron population (e) in
the presheath. The details of the trapping process are out of the scope of a macroscopic model.
Density, temperature, and diffusion flux of the population e are defined through conservation
conditions at the two presheath/sheaths transition. We find this model more natural than the
one of Refs. [31] and [32]|, where secondary electrons move freely from the wall to the center
of the cross-section, where they are automatically transformed into trapped electrons for the
other half-channel. This sudden thermalization is rather artificial and introduces an undesirable
electric field around the cross-section center (see Fig. 1 of Ref.[32]). Another advantage of our
radial model is to be compatible directly with axial models, where a single electron species is
generally considered.

When solving the equations for the presheath and sheath, we will make use of the funda-
mental properties of this classical problem, like
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(a) The two-scale analysis implies that the sheath is a layer discontinuity in the quasineutral
scale of the presheath. The presheath has its own spatial structure, but with spatial gradients
infinitely smaller than in the sheath. In particular, the ratio between the electric fields in
presheath and sheath is A\;/d < 1.

(b) On the presheath scale, the transition to the sheath corresponds, generally, to a turning
point of the presheath solution (point Q in Fig. 4.2), that is, a point where derivatives of
plasma, variables become infinity; in particular, the electric field is infinite at point QQ on the
quasineutral scale. Indeed, the large gradients near the turning point are announcing the
transition to the sheath with a much thinner spatial scale, the Debye length. The presheath
turning point is identified by a certain condition on the plasma flow, which is known as the
Bohm sonic condition.

(c) On the sheath non-neutral scale, the transition to the presheath corresponds to a zero
electric field. In general, the sheath is semi-infinite in its own scale and the zero electric field
is attained asymptotically.

4.2.1 The presheath

Equations are written for the half-channel r); < r < ry; the response in the other half-channel
is symmetric. We assume the presheath to be constituted by two species only: free ions (i) and
confined electrons(e). By definition, the presheath is quasineutral at every point:

n; ™ Ne.

In this issue we disagree with the following two statements of Stephens and Ordonez[31]: (i)
quasineutrality is satisfied only globally in the presheath; and (ii) local quasineutrality at the
presheath /sheath interface is the matching condition there (when the correct one is the Bohm
sonic condition).

Based in 2D planar equations for ions, we define the following 1D radial model:

d
3 ilri = i, (4.1)
dvrz’ d¢ _
mivriﬁ + 65 = —My;Vp;Vyp, (42)
where
10
w = Vi — — 7 (NiVqgi 4.3
v, v, n ax(nv ) (4.3)

is the frequency for net ion production in a radial section, which includes both ionization and
the differential increment of the axial ion flux; and
Vi 81)”-

Vp =V + Veg + —
Uy OX

(4.4)

measures the ’friction’ effect of collisional phenomena and axial transport on the radial velocity
of the ions.
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Ion equations (4.1)-(4.4) are completed with the electron equations

Ure = Uri,
dn, d¢ (45)
~ T —.
0 “dr tene dr

The first equation results from the zero-current condition at the lateral wall. In turn, this jus-
tifies neglecting the term vem,nv,. in the second equation and Coulomb collisions in Eq.(4.2).
Also, the radial gradient of T, (due to thermalization of secondary electrons, for instance) has
been disregarded.

Operating with Egs. (4.1), (4.2), and (4.5), the radial velocity satisfies

duv..:
(T, — m;v2,) ;}: = v, T, + v,mv2,. (4.6)
The transition to the sheath, point Q, corresponds to the turning point of the presheath profiles.
From Eq. (4.6), the transition (i.e. Bohm) condition is

T,
ri = UriQ = —=. 4.7
Uri = UriQ - (4.7)
To solve Eq.(4.6), the radial profiles of both frequencies must be specified. Here we will
consider the plausible case

Uy(r) = const, v,(r) = const.
Then, the integration of Eq.(4.6) yields

1+a arctan(uy/a) — u = v (r —ra), (4.8)

Va UriQ

where we called
U = vri/vr‘iQ: Ol:l/,-/l/w.

The profiles for the density and the electric potential are then determined from Eqgs. (4.1),
(4.5) and (4.8),

eppy —ep . miy 1+ a 9
T =In - 2a In(1 + au®). (4.9)

Imposing the Bohm condition (4.7), i.e. w = 1, the potential drop ¢gom = dur — ¢g, and the
density change across the presheath are found to satisfy
epqur o M _ 1+a

= In(1 ; 4.10
F =T = 1+ 0) (4.10)

Also, setting v = 1 in Eq.(4.8) at rg — ry ~ rw — ry = d/2, we have

arctan /o — 1),

14+«
= (a) =2
~( va (4.11)
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which is the parametric equation relating the two relevant frequencies of the radial problem.
Here,
1 /T,

vy = . (4.12)
is the frequency of reference for radial processes. Equation (4.11) expresses that the produc-
tion/loss frequency is not free. The dielectric wall implies the presence of a non-neutral sheath,
which forces the Bohm condition on the ion flow to the wall, and this makes v, not free. Its
actual value depends on the acceleration process for ions and this is the meaning of the rela-
tionship v, (). In the model of Ref. [12], where we assumed v, = 0, v,, was totally determined
and equal to 4/3.

Figure 4.3 shows the profiles ¢(r) for three values of 7. On the presheath scale, the jumps
of the different plasma variables across the sheath are vertical discontinuities starting at the
turning point Q, and are to be determined from the sheath equations.

Figure 4.4 shows the evolution of 7, and e¢gps /T, versus 7, Egs. (4.10) and (4.11). Asymp-
totic expressions for small and large values are

- . 4 ep 1
U, L 1: I/w’:g, '_ZMZE’
2 ~
U > 1: ﬁw:ir—, 6¢QM:ln&.
Up T, T

Physically, a large ’friction’ implies a large potential drop to accelerate the ions to the Bohm
velocity. As a consequence, n;o/niy is low, the plasma current to the wall is low, and 7, is
low.

4.2.2 The sheath

Both ion and electron dynamics present changes in the sheath. For A\;/d — 0 the sheath
thickness is negligible compared to the channel width, the contribution of v, and v, to ion
dynamics within the sheath is negligible, and Eqs.(4.1) and (4.2) yield the conservation of ion
particles and energy. Within the sheath, electrons are classified into the main primary popu-
lation (p), which diffuse towards the wall and causes secondary emission, and the population
(s) of secondary electrons, which, after crossing the sheath, become trapped in the presheath,
in a process not analyzed here. The set of macroscopic equations for the three species in the
sheath are:

Ny = const = g; = nigr/Le/my,

smiv% + ed = const = T, + edq,

NpUpp = cONSt = g, = Npw+/1p/2TMe,
ep — edq

T,
TgVps = CONSt = g,

(4.13)
Ny = NpQ €Xp

1 2 — —_ 7
3Mevy, — ep = const = T,
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The value of the primary flux, g,, was calculated assuming a Maxwellian distribution of tem-
perature 7,. The mean energy of the population of secondary electrons when they leave the
wall is T,,, which can be assumed of the order of the wall temperature. Therefore, one expects

T,/T, < 1,

which allows one to work in the asymptotic limit T,,/7, — 0, except in the very vicinity of
point W. Finally, the low value of T}, and the acceleration of the secondary electrons as they
cross the sheath justifies neglecting thermal effects for them.

The flux of secondary electrons is assumed proportional to the flux of primary electrons:

gs = —0uw0p (gs < 0)7 (414)

with d,, the effective secondary emission yield. In addition, the zero-current condition at the
wall relates the electron and ion fluxes,

9i=0p+ 95 = (1—04)0p. (4.15)

To compute the effective yield for secondary emission we start with the case of a monoener-
getic electron beam. If E is the beam energy, we average over the different angles of incidence,
and, for £ low enough, we consider that 9,, satisfies

30 (E) ~ (_ﬂ)p. (4.16)

Here, E,, is the energy for 100% yield, and depends strongly on the wall material; the typical
range, for the materials of interest in a Hall thruster, would be E,, ~ 20—100 eV. The exponent
p is around 0.5, for the same materials. Next, for a Maxwellian population of temperature 7,
the effective secondary emission yield can be computed by averaging the law (4.16) over the
different electron energies. This yields|29|

5 (T}) = (E)p, (4.17)

with
Ey = ;
T'(2 4 p)t/e
for p = 0.5, one has E,, ~ 0.57E,,. For E, ~ 30 ¢V (Boron Nitride ceramic referenced in [12])
one obtains F, ~ 16.64 eV for p = 0.576 , or E,, ~ 17.0 eV for p = 0.5. For E, ~ 70.2 eV
(BNAIN ceramic referenced in [32]), one has E,, ~ 40.0 eV for p = 0.5.
Plasma equations (4.13) are completed with Poisson equation

€0 d2(/)

e dr?
Integrating this equation together with Eqs.(4.13) and imposing that the electric field goes to
zero asymptotically at point Q, that is

ded/T)|

d(r/Xa) le

=N, +Ns — Ny
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one finds the conservation equation

€0 d¢ 2 N
5 (5) =Ul(ep) — Uledq), (4.18)
where

U(€¢) = inp + mensvfs + mm,vfl

is the Sagdeev’s potential. Equation (4.18) expresses the balance of the dynamic and electric
pressures of the whole plasma across the sheath. Notice that the first derivative of U measures
the local electric charge: U(ed)’ = n, + ns —n;. Also, the electric field at the wall measures the
total electric charge in the sheath:

€ do
_ 1, —ny)dr. 4.1
5 dr /Q (ni — ny — ns)dr (4.19)

Two boundary conditions at point Q are related to U(e¢). First, plasma quasineutrality is
achieved there,

U(IQ = Npg + Nsg — Nig = 0. (420)

Second, with the presence of two electron populations in the sheath, the Bohm condition takes
the form

n n n;
Uy = 7’:‘9 - % . (4.21)
p mevrsQ mlvriQ

Finally, to match correctly the solutions of presheath and sheath, we must define the rela-
tionships among the magnitudes of the different electron populations at both sides of point Q.
These conditions are

NeQ = NMpQ + TNsQ;

9eQ = 9p@ + 950 = (1 = 6w)9pq; (4.22)

e _ MpQ  TMsQ

T. T, mevfsQ )

The last expression makes equivalent the two forms of the Bohm condition, Eqs.(4.7) and (4.21),
and determines T,(7,). One can see that T, > T, as expected from the grouping of the primary
and secondary populations into a single one.

Notice that e— and p— magnitudes coincide for d,, = 0, as it should be. Let us use this
case to justify that the conditions defining the transition presheath/sheath (i.e. point Q) are
unique. On the one hand, a solution for the presheath exists only for v, < /Te/m;; on the
other hand, a solution in the sheath, around point Q, requires that Ug > 0, which (for 6, = 0)
states that v, > y/Te/m;. Therefore, v.;o = \/Te/m; is the only valid transition condition.

The sheath equations and boundary conditions have shown that é,,, T, and n.q fully char-
acterize the sheath solution (except for the marginal parameter T, /T, < 1). Furthermore,
using 7, and n.g, and the related Debye length

Ad = y/€oTe/e®neg,
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to non-dimensionalize the sheath equations, the dimensionless solution depends on just the
secondary emission yield, d,,. In particular, the inner spatial variable to be used is

_T—TW

(4.23)

Taking into account that U(’Q, U(’é = 0, the potential around point Q comes from the expansion

€ d ) UIII
0= Fr-tor s
of Eq.(4.18), with Ug < 0 for an ion-attracting sheath. For each d,, the potential profile ¢(y)
in the sheath is obtained by determining, first, the sheath potential jump, ¢wg = ¢g — ¢w, and
performing, then, a numerical quadrature of Eq.(4.18), from the vicinity of point Q towards
point W, using the above expansion as initial condition.

Figure 4.5 shows the potential profile ¢(y) in the sheath (between points W and Q, with
yo = —oo) for three values of d,. Thus, the whole potential profile, from the channel center
to the wall, depends on the values of §,, and 7, and is obtained by matching the respective
presheath and sheath profiles.

Figure 4.6 shows the evolution of the main sheath parameters with ,, up to

8, = 6% ~ 0.983, (4.25)

when the electric field at the wall boundary is zero, d¢/dy|g = 0, which corresponds to the
charge saturation limit (CSL), to be discussed below. Fig. 4.6 shows that n,q/n.q and T,o/Teq
remain very near unity up to &, ~ 0.9, and then the contribution of the secondary emission
grows to a 10-15% for the CSL. This means that the properties of the electron population in
the presheath are mainly determined by primary electrons, which adds reliability to our model
of a unique electron population in the presheath.

For d,, = 0, the sheath potential is large, epwq/T. ~ 5.28. For §,, > 0, the sheath potential

satisfies
edwo [ m; npg [Tp
— = =] ——— +1In(1 —6,) +In | —4/—=]. 4.2
T, " 2mme +in(1—dy) +1n [neQ Tj (4.26)

Since the last term on the right side is small for any §,, the first term on the right side
dominates until the secondary yield satisfies 1 — 6,, ~ 1072, that is up to the vicinity of the
charge saturation limit. This explains why the potential profile does not change significantly
until 6,, does not approach the CSL. The potential drop in that limit is egjyo/T. ~ 0.88.

4.2.3 The charge saturation regime

As the secondary emission yield increases, the electron density near the wall increases and the
electric field at the wall decreases, as shown in Fig. 4.6, until it becomes zero at the CSL. From
Eq.(4.18), the condition for charge saturation is

0=Uledw) — Uledq),
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or, in terms of the dynamic pressures of the different species,
Tp(an - an) + megs(usQ - UsW) = migz'(uiW - U/z’Q)- (4.27)

Since the electric field at the wall depends just on 4,,, the charge saturation limit corresponds
to a certain value of that parameter, as we saw before.

To explain the value obtained for d,, at the CSL, Eq.(4.25), let us recall the classical CSL
problem for planar sheaths with e¢w /T, > 1 and g, independent of g,. For them, Eq. (4.27)
simplifies into m;g;u;w >~ M.gsusg, where from the ion and electron counter-streaming fluxes
satisfy

m
~ ¢ 4.28
m;’ ( )

gi
9s

which is known as the Langmuir condition. Physically, this law is explained by two facts: on the
one hand, integrating Poisson equation the total electric charge in a charge-saturated sheath is
zero, so the average densities of accelerated ions and electrons are the same; on the other hand,
the average kinetic energies of ions and electrons are the same and of the order of the potential
jump. For e¢wq/T, = O(1), more terms in Eq.(4.27) will contribute to the fluxes ratio but we
can expect the Langmuir condition (4.28) to be still verified, except for a factor of order one.
In our case, applying both the Langmuir and the zero-current conditions, the CSL is expected
to happen for

me i 1- 5:;1

—_— — Y

m; s 6';:1

~1- 0%, (4.29)

in agreement with the value given by Eq.(4.25).

Let us discuss now the plasma response once the CSL has been attained. For the real case
T, > 0, a secondary emission yield larger than d7, leads to a potential profile with a minimum
near the wall (at a point W’, let us say), which acts as a potential barrier to turn back to
the wall the excess of secondary flux. The actual secondary flux, g., reaching the presheath is
the flux at point W’. Since d¢/dy|w+ = 0, the secondary flux between W’ and Q satisfies CSL
conditions, that is Eqgs. (4.14) and (4.25)

gy = —0Gp-
The typical size of the potential barrier, to turn back the excess of flux, g, — gs|, is
€(¢W - ¢W') ~ Tw-

Then, in the asymptotic limit 7,,/T, — 0, the region W'W is negligible and the CSL (in Fig.
4.6, for instance) instead of identifying a single operation point, identifies a whole domain
of operation, the charge-saturated regime (CSR), satisfying J,, = 47, at all operation points.
Therefore, the unified expression of the secondary yield for the non-CSR, and CSR is

8u(T}) = min {5;;,, (g—i)p} (4.30)
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Although Fig. 4.6 gives a complete information of the sheath solution for the two regimes,
a clearer view of the change of behavior at the SCL is given by Fig. 4.7, which shows the
evolution of ¢y g with T, for different E,,; one has

edlyo/T. ~ 0.88

at all points of the CSR.

A final but very relevant consequence of the existence of the charge-saturation regime is
that the electron-repelling sheath exists always, contrary to what we expected previously in
Ref. [12]. The charge-saturated sheath will limit particle and heat losses in the high T, range.

4.3 Wall-source terms in the axial model

Once the radial profiles are known, we can evaluate the source terms of Eqs.(2.21)-(2.24). The
quasiplanar approximation will be used.

4.3.1 Particle losses

The ion and electron (negative) gains per unit of volume in a radial section are, Eq. (2.21),

2 2

S'w = _E[nzvm]% = _Eg'w
or, using Eq. (4.1),
. 2 v
Sy ——/ NiVpdr = —N;y,, (4.31)
dJum

where 7n; = 7, is the average plasma density in a radial section. From the two above expressions
one has

o _ 2 Mg (4.32)
Nive U Mipg
and 7;/n;pr depends only on #, and is of order unity.
The production frequency satisfies
Vi = Vol (D), (4.33)

with [Eq.(4.12)]

1 To\1/2
vy ™~ (%) (E) x 2 x10% s 1

and 7, (7,) given by Eq. (4.11). The scaling law v,; < v/T¢, suggests to approximate 7, defined
in Eq. (4.4), by

1
VT('Z‘) = V_()(VZ + Ver +

Vg 8\/1_}>

N (4.34)
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an expression that can be made independent of 7. The last term includes the ion Mach number
of the axial flow which is large near the exit. Therefore the slope of T, (z) affects strongly the
particle losses there.

The losses in plasma current (per unit of axial length) can be calculated from

N A, N Vy
~eSule = (qgo) (ommrs) * (fgres) x 0-644/cm,
with A, the cross-section area of the channel (the reference values used here are typical of a

SPT-100 thruster). Unless the friction parameter #, is large, particle losses are going to be
high.

4.3.2 Near-wall conductivity

The gain per unit of volume in azimuthal momentum of the electrons in a radial section, due
to the fluxes of primary and secondary electrons, Eq.(2.23), is

2

~ W .
Mw@e = __[menevTevee]M = ——MeGpUge,
d d

for T,,/T, — 0.
The equations for electron current follow the closed drift approximation. Taking into account
radial effects, they can be written as

L dopd . .
0=ene— — ——NIe + WeMMeTeVge,
dr dzx
~ ~ ~ ~, I
0= _mene(wevze + Vev9e) + MwOe’

where the azimuthal ’friction’ force due to the walls, satisfies

Mlluﬂe = Mw@e - mes’weﬁOe = Vwmmeﬁe'ﬁae, (435)
with
Vwm = Vwﬂm((sw)a (436)
the related frequency, and
0.
m 5111 = “
Bm(bu) = o5

an enhancement function, shown in Fig. 4.8, due to secondary emission, which can multiply
the production frequency by a factor up to 60 in the CSR.
The ’friction’ frequency adds a second term to the electron axial current, which now satisfies

Ve + Vwme(eﬁ E _ dﬁe)
w? T dx )

This contribution is the 'near-wall conductivity’(NWC) of Ref. [33|. Here, the NWC does not

present radial oscillations along the cross-section, because vy, represents an average value.

Since typical values of v, are of order 107s!, the near-wall conductivity will be a marginal
effect except for the charge-saturated regime and a large friction parameter, 7.

(4.37)

eNeVge ™2
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4.3.3 Energy losses

The (negative) gain in electron internal energy, per unit of volume, due to wall interaction,
satisfies

2.5 v onT,
Q. =~ —a{ [ineTevre + qre}z — /M vmrg—rdr}, (4.38)

with g.. accounting formally for heat conduction. The computation of the different terms yields

Q, = _VweﬁeTea (439)

we

where

Vye = Vi [ﬁe(éw) + /62,(’77')] (440)

is the related frequency, and

Be(0w) = %(BQSTV:Q 1 _25w>’

B0 () = i () ™

1+«
ou? +1

are two enhancement functions. The first one, 5.(d,), plotted in Fig. 4.8, depends on the
sheath characteristics; it goes from 3, ~ 7.28, for 6,, = 0, B. = B ~ 104.5, for d,, = 0,,. The
second one, £.(7,), depends on the presheath characteristics and has a lesser effect in Q! .: we
find B, < 8. for o, = O(1), and v,,8. ~ (InD,) /P2 < v, for 7, > 1. For the sake of clarity
we suggest to use the expression

1.65
Bo(0) ~ 5.62 4 ———, (4.41)
1— 0,
which approximates the exact function with an error less than 10%.
The losses in internal energy (per unit of axial length) can be calculated from

e () () (s70) * (5) > 7rawen.

Fig. 4.9 computes |Q4MAC| in terms of T, for different values of the characteristic yield energy,
E,. As in the case of the sheath potential ¢w ¢, Fig. 4.7, there is a change in behavior from
the non-CSR to the CSR. For a given T, and below the charge-saturation regime, energy losses
increase with E,, decreasing. Within the charge-saturation regime energy losses are independent
of E,, and grow with T /2] Figure 4.9 shows that the energy losses can be enormous if there
is not a large ion friction, or any other phenomenon able to reduce significantly the electron
current to the wall.

For wall heating considerations, the important magnitude is the total energy deposited by
electrons, which is the sum of the heat loss, Q’ and the loss of azimuthal energy, m v} nievy,.

we?
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4.4 Conclusions

We have presented a model of the radial structure of the plasma interaction with dielectric walls,
supported in three pillars: (i) a two-scale asymptotic analysis; (ii) a new model to account for
trapped secondary electrons; and (iii) the inclusion of ion radial ’friction’, due to collisional
processes and axial transport. The presheath properties depend on the ion friction parameter
U, whereas the sheath properties depend on the effective secondary emission yield, d,,. A large
friction increases the presheath potential drop, and reduces the plasma current to the wall.
The charge saturation limit is attained for d,, ~ 0.983, and marks the transition to a charge-
saturated regime, with a constant ratio for (sheath potential drop)/(plasma temperature). As
a consequence, the electron-repelling sheath never disappears.

Particle exchanges at lateral walls lead to losses in particles, energy, and azimuthal momen-
tum. The near-wall conductivity has been determined from the loss in azimuthal momentum. It
seems to be a moderate effect except for operation near or under the charge-saturation regime.
For typical thruster conditions the model predicts too large losses of particles and energy, un-
less a large ion ’radial friction’ is assumed. The coupling of the radial and axial models, now
underway, will show whether a large radial friction is attainable.

Total trapping of secondary electrons does not seem the case in practice, according to typical
values of the total electron collision frequency. Partial trapping implies a double population
of secondary electrons traveling freely from wall to wall. This more general case, now under
study, will certainly modify the radial structure and could provide and additional mechanism
to inhibit radial transport to the walls.
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Figure 4.1: Sketch of the radial model in the quasiplanar case. Point M represents the mid-plane
of the channel. The sheath is the region of large gradients of ¢(r).
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Figure 4.2: Two-scale analysis: point Q is the presheath /sheath transition with d¢/dr — oo in
the quasineutral scale. g, and g, are the fluxes of primary and secondary electrons at the wall;
in the presheath, both populations are grouped in a single one with g. = g, + gs.
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Figure 4.3: Presheath: Potential profile for different values of the dimensionless friction param-
eter.
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Figure 4.4: Presheath: Influence of the radial friction frequency on the production frequency
and the potential drop across the presheath.
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Figure 4.5: Sheath: Potential profile for different values of the secondary emission yield. For

0w = 0 ~ 0.983 it is d¢/dy|w = 0, marking the charge-saturation limit. Point Q is here at
yQ = —0OQ.
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Figure 4.7: Evolution of the sheath potential drop with the plasma temperature for different
ceramic materials (i.e. E,). The straight line corresponds to the CSR.

Figure 4.8: Enhancement functions for the effective frequencies accounting for near-wall-
conductivity, Vym, and energy losses, V..
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Figure 4.9: Energy losses per unit of channel length for different wall materials, A, = 40 cm?,
d = 15mm, 7, = 10**m 3, and 7,, = 1. The solid line corresponds to the CSR. Energy losses

are proportional to .



Chapter 5
EFFECTS OF LATERAL LOSSES

5.1 Governing equations

Here we add the effects of the plasma interaction with the thruster walls, studied in the previous
chapter, into the basic steady-state model treated in Ch. 3. For sake of clarity in the exposition
and to avoid continuous references to previous chapters, we give a brief but complete account
of the model equations.

The stationary, macroscopic equations for the quasineutral plasma between the entrance to
the anode sheath (point B) and the external neutralization surface (point P) are

1 1 1d
Z%(Anevml) = Z%(Anevme) = —Z%(Ann’un) = ’]’Le(]/z- p— ]/w)’ (51)
1d 5
Adz (Amznevwz) €N dr + mzne(yzvn vam)a (5 )
1d
Zd—(Ammnvi) = MiNe(VUnw — ViUn), (5.3)
z
d ¢
0= —d—neTe + ened— — UgMeNUge, (5.4)
z z
1d 3 dv
—=a(s = —nT, 22 2 Uimei By — veneT. .
AdxA <2Tenevze> Nele dz + VgMeNeVye — ViNeQlill; — VyeNele (5 5)

The ionization frequency follows
v; = nnRi(Te);

the axial diffusion frequency for the magnetized electrons satisfies
2

e (5.6)

Y
V6+Vwm

w
Vg =

with
Ve = Vep + Ve; + QW

the electron collision frequency, grouping contributions from e—n and e —i collisions, and Bohm
anomalous diffusion; v, v, and v, are frequencies accounting for particle losses, near-wall
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conductivity, and energy losses at the lateral walls; and v,,, is the axial velocity of ions after
wall recombination and accommodation.
The area A(z) and thickness d(z) of the plasma jet cylindrical cross-section, are constant
within the channel and satisfy
da 2
— = —tand, x> 1L, 5.7
de d (5.7)
in the plume, with ¢ the local mean angle of divergence of each boundary, to be defined below
and a = In A 4 const = Ind + const.
The azimuthal components of the electron velocity and the heat flux follow
Yoe . Boe  _Ye (5.8)

- ?

U:I;e qg:e Ve

with we /v, > 1.

5.1.1 Frequencies for wall-source terms

We summarize here the expressions obtained in Ch.4. To help solving the axial model, some
approximations are made too. The particle loss frequency satisfies

, 5.9
- (59)
with vy the reference frequency for the radial motion, and 7, a dimensionless factor, which
depends on the characteristics of the radial motion. In this work we will take the simplest case

Vy = Wy, Vo=

V,, = const.

Future work will have to take into account the influence of the radial dynamics of ions and
secondary electrons on 7, that is the functional relation 2, (#,), discussed in Ch.4.
The frequencies for near-wall diffusion and heat losses are

0w
Vwm = ﬁmywa /Bm(aw) = )
1— 4y
. (5.10)
Ve = /Beuw; ﬁe(éw) ~ 562 + 1;75,

with 3, and B, enhancement functions, which depend on the effective secondary emission yield
0w(Te). Assuming that the secondary emission yield for an impinging monoenergetic electron

beam of energy F, follows the law
6w(E) ~+/E/E,,

the effective yield for the quasi-Maxwellian population of primary electrons, satisfies Eq.(4.30)

§u(T%) = min {5;;, Ei}
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with )
Ew ~ _Ew
3

the temperature leading to 100% secondary emission|[36] and
d,, ~ 0.983

the upper-bound value of §,, corresponding to the charge-saturated regime for the lateral
sheaths. Therefore, the maximum values of the enhancement functions are

B ~ 60, B ~ 105,

and the charge-saturation regime corresponds to T, > 0.967FE,,.

5.1.2 Singular points and boundary conditions
Solving Eqs. (5.1)-(5.5) for the spatial derivatives we obtain a matrix relation of the form

(1-— M%% =F(Y), (5.11)

where Y = (T, ne, N, Vgi, Uge, Un, ) groups the 7 plasma variables, F' is a regular function and

M=__"%i_ (5.12)

\/ 5Te/3mz

is the Mach number for the ion axial flow. For instance, the equations for n, and v,; can be
written as

1dn., Gdvy G da
— = = = Vi = Vy — Ugi\ 55 T ) 1
nedz Pdx TV (P + dx) (5.13)
with P = T,(1 — M?) and
2 dln A
VG = 14 [gaiE,- + T, — gmivwe(%wi — vn)] — l/dmevie + %miviivm%

2 3
+ gl/weTe — (Te — gmivmvme> V. (5.14)

Sonic points and boundary conditions are discussed in Chap.3. The seven boundary condi-
tions needed here are:

i)-ii) The injected flow of neutrals at the anode, m, and their velocity, v,g = v,4, are known.

iii) The electron temperature at the neutralization surface, T,p, is known.

iv) The potential drop between points A and P is the discharge voltage, ¢4 — ¢pp = Vj.

v) The presheath /sheath transition at point B requires Mg = —1, which is the Bohm sonic
condition on the ion back-flow.

vi) The potential jump at the anode sheath satisfies Eq.(3.11)

6¢AB EeB
=1 > 0,
TeB 4 | VzeB |
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with ¢, = /8T, /mm.

vii) There is a regular sonic point inside the channel (point S), which, according to Eq.(5.13),
is characterized by

GS =0 at Ms =1. (515)

In addition, we must define an expression for the angle of divergence 0. Following Ref. [37]
we take

tand =

V5Tep/3m;. (5.16)

(T

Notice that discharge current, I, position of forward sonic point, g, and divergence angle
at the channel exit, dg, are part of the solution.

5.2 Axial plasma structure

Figure 5.1 shows the first complete results we have obtained with the preceding model of radial
losses. Profiles of most plasma variables are shown for a SPT-100 type of thruster. The solution
shown here presents moderate wall losses. However, the values selected for the parameters that
determine radial losses: 7, ~ 0.17 and E,, = 100eV, were aimed mainly to test the possibility of
obtaining valid solutions. Our procedure to obtain these solutions is to carry out a parametric
continuation from the solution without wall losses v,, = 0. Actual values of F,, for BN-based
materials are in the range E,, ~ 2E,,/3 ~ 15-40 eV. From Eq.(4.11) #,, ~ 0.17 corresponds to
Up ~ 50, and v, ~ 10"Hz, which, from the definition of Eq.(2.59), seems too large; however,
partial trapping, not investigated yet could reduce 7,,. Attempts to increase 7, and reduce E,,
beyond the case of Fig. 5.1, have encountered different convergence difficulties. One of them is
the appearance of complex values for the plasma derivatives at point S preventing the launch
of the integration.

The solution of Fig. 5.1 shows that energy losses at lateral walls smooth the temperature
profile, the maximum temperature decreasing from about 90 eV with no wall losses, to about
68 eV now, which corresponds to a maximum secondary yield of d,, ~ 0.82, far (in terms of
losses) from the charge-saturation value J%. Energy losses take place in the acceleration region,
where T, is high. On the contrary, losses in plasma current are concentrated in the rear part
of the channel. The (relative) ion back-flow at the inner boundary of the ionization layer is
nip ~ —0.37, whereas at the anode is just 7,5 ~ —0.05, which means a current loss in the
diffusion region of 1.2 A. The total plasma current deposited at lateral walls, f Swdz, with

Sw = eNgVy A,

plotted in Fig. 5.1, is 2.0 A, about a 38% of the discharge current, I; = 5.21 A, and a 34%
of the total ion production (about 5.8 A); Bishaev and Kim[1] estimate, in their experiments,
relative current losses of similar magnitude. Notice that the plasma current lost in the lateral
walls implies a larger ion production and eventually a larger discharge current, decreasing thus
the thrust efficiency.
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The electron energy deposited by conduction at lateral walls, [ Q. dz, with
Qw = Tenel/weAc

plotted in Fig. 5.1, is 144 W, which represents a 9% of the electric power, I;V; ~ 1.56 kW; Ref.
[1] estimates this energy loss around 20%.

The structure of the plasma discharge in Fig. 5.1 is similar to the one found when there were
no lateral losses, Fig. 3.2. It consists of (see Fig. 2.1) anode sheath (AB), anode presheath(BC),
diffusion region(CD), ionization layer(DH), acceleration region(HE) and near-plume (EP). De-
limiting points inside the channel are £, = 0, x¢ >~ 0.5 mm, xp ~ 11.5 mm, zz ~ 14 mm. The
regular sonic point is downstream the ionization layer, at xs ~ 18.2 mm. In the acceleration
region, volume ionization and ion recombination at lateral walls are rather low, keeping the
ionization fraction 7;(z) almost constant.

Notice in Eq.(5.14) for G that the presence of two terms for lateral losses gives more flexibility
to the balance necessary for a smooth sonic transition (i.e. Gg = 0). The drift of point S away
from the ionization layer, when lateral losses are included, indicates that electron diffusion (i.e.
Joule heating) and lateral energy losses dominate the balance at the sonic transition, that is
we have

2
2
gl/weTe ~ VgMes,

at point S.
Potential drops in the different plasma regions are ¢ ~ 1.2V, ¢cp >~ 0.02V, ¢pps ~ —61.9
V, ¢psg =~ —137.6 V, ¢gp =~ —101.5 V, ¢ps =~ 10 V. Notice that the potential drop in the
ionization layer is moderate and follows the law|37| ¢pg ~ % VH -
The thrust, defined as
F= ("nznzfvz2 +pe)EAc,

is F' = 90.6 mN and the thrust efficiency (using the definition of Ref. [37]) is =~ 0.50, which
comes from the product of utilization efficiency 7, ~ 0.90, (electric) current efficiency 7, ~ 0.73,
energy efficiency 7. ~ 0.97, and plume efficiency 7, ~ 0.86.

5.3 Influence of control/design parameters

Figures 5.3 to 5.6 show this influence for different parameters. These plots have been obtained
from continuation routines, departing from the solution of Fig. 5.1. They can be compared
with Figs. 3.3 to 3.8 for zero-losses at the walls, Sec. 3.6. Since wall losses are not very large,
most features coincide. We observe that:

1. Influence of the mass flow, Fig. 5.3: Discharge current and thrust increase linearly with
the mass flow —in agreement with experiments |25, 38, 39, 2]-. In addition, 7 is one of
the few parameters affecting weakly the reverse flow (i.e. 7;5). All these features make
m a very suitable parameter for thruster control. Although wall losses increase with m
too, the trade-off for thrust efficiency and specific impulse favors larger mass flows.
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2. Influence of the discharge voltage, Fig. 5.4: Both thrust and specific impulse grow like
le/ ® _in agreement with experiments [25, 38, 39, 40]-. Experiments [39, 40| show that n
presents a maximum for V; around 300 V. The region of positive slope for low potentials.
is not found here, possibly because it corresponds to a regime of partial ionization. The
efficiency decrease for large V; would be due to a larger acceleration region and, as a
consequence, larger energy losses to the walls.

3. Influence of the magnetic field strength, Fig. 5.5: larger B,, means an inhibition of
axial transport, leading to a larger ionization efficiency and, eventually, a lower discharge
current and a larger thrust efficiency favored by lower lateral losses too). Experimentally,
B, is increased until a non-stationary regime is attained[5]; our results suggest that this
would correspond to the limit ;5 ~ 0.

4. Influence of the magnetic field slope Fig. 5.6: The increase of n with L,, indicates that it
is the average magnetic field strength what influences basically the plasma response.

5. Influence of the cathode position, Fig. 5.7: it is relevant for short values only. Since we
do not have a clear criterion to choose xp, we suggest to avoid small values.

6. Influence of the channel length, Fig. 5.5: Thrust and efficiency increase moderately
with the channel length, mainly because the plasma leaves the thruster more supersonic.
Experiments 77 show the function 7(L) having a maximum. We could not reproduce it
here, possibly because wall losses have not increased enough here.

7. Influence of the thruster size, Fig. 5.9: Here, large wall losses make the efficiency to
present a maximum for an intermediate size. Notice, however that thruster operating
conditions are not optimized for each size.

Figure 5.10 shows how the pair of parameters (V;, B,,) should evolve to keep n;5 ~ —0.05.
We expected that increasing both discharge voltage and magnetic strength, n would grow.
However, the increase of wall losses keeps the efficiency almost unchanged, but thrust
increases.
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Figure 5.1: Axial structure of the plasma discharge for L = 25mm, Lgp = 8.3mm, A, =
40.1cm?, Vy = 300V, 1h = 5.2mg/s, T.p = 2.7eV, 16ap ~ 0.21, E, = 100eV, i, (z) ~ 0.17,

Upw = Vi, and npep ~ 4.3 - 10®m™3. (continues in Fig.5.2)
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Chapter 6

EFFECTS OF HEAT CONDUCTION

6.1 Governing equations

Here we add the effect of heat conduction into the basic steady-state model treated in Ch. 3.
Wall losses are neglected, i.e. 7, = 0. Again, for sake of clarity in the reading we give an
almost complete account of the model equations.

We consider now the set of equations We consider the same stationary model of Chapter 3
but including heat conduction effects. The governing equations are

d d d
%(Anevm-) = %(Anevwe) = —@(Annvn) = An.v;,
v, = const,
1d do
Z@(Ammevgi) = —ene + MMV Uy,
4o dn,T, (6.1)
0=en,— — — MelVgTeUge,
dz
1d 3 Avge
Z@A <§Tenevze + qze) = —neTe;—m + l/dnemevie —vine.ou; B
dT,  2meyy
dz ~ 5n.T, Ge-

6.1.1 Singular points and boundary conditions

Solving Eqs.(6.1) for the spatial derivatives we obtain again a matrix equation of the form of

Eq.(5.11)

(1—M?)

-~ —F(Y Y = (ne, vz, T, ..0), .
— =F(Y), Y =(n,vT ) (6.2)

72
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where now Y = (ne, Vg, It, ge, --.) groups 8 plasma variables, F' is a regular function (different
from the one in the zero conduction model), and M is the isothermal Mach number,
Vgi

V Te / m; ‘
For instance, the ion velocity follows Eq.(5.13),
d’Um' (3 G

V. _———
de " T,1-M?»
but now function G is
2Me Qe ,dlnA
T, | vim;i(2vg; — vy) + MiV—
The eight boundary conditions for this model are the seven ones of the no-conduction model
plus a condition for the heat flow deposited by the electrons into the anode sheath (at point
B), already discussed in Sec. 2.6. Summarizing, the eight boundary conditions for a solution
with supersonic-exit are
1)-iv) m, vpa , Tep, and Vy = &4 — &p are known.
v)-vii) At point B:

Vgi = —+/ Le/ M,

e(Pp— D4) Dy CeB iz m;
TeB TeB " 4|’”$6B| ! I‘eB 27rme (64)

qzeB . €(I)5h 1

neB/Ua:eBTeB B TeB 2
viii) At point S one has Mg =1 and G5 = 0, that is

(6.3)

G= —Vg [MeUge —

MiVis _ Fa—Tis  GzesAe gt vee — Tes (6.5)
Melgs 25 Tesl';s s m; '
In dimensionless terms, Eq. (6.5) becomes
miyfk . 2(]zceSAc . Fm
io(1 —m; L=y —m; th = TR, 6.6
7715( nzS)mede g — 1is + 5T,sT, w1 v; n iS5 ( )

which can be compared with the corresponding condition for the non-conduction problem, Eq.
(3.16).

The presence of an additional differential equation for ¢,. implies a new mathematical model,
with a different sound velocity for the ion fluid and, therefore, different singular/sonic points.
The consequence is that the model with heat conduction requires its own integration algorithms
and cannot be solved from adding extra terms to the no-conduction model and performing a
parametric continuation on solutions computed previously. nevertheless, the integration pro-
cedure tries to be similar to the non-conduction case. Independent integrations are launched
from point S towards points B and P. As before, region BS poses the main restrictions to the
existence of solutions. An additional difficulty now is that the solution launched from S must
meet condition (6.4) on gz, which requires iteration on the new ’initial’ parameter gges. In-
deed, due to convergence problems, it is easier to launch solutions from points B and S and to
match them in an intermediate point.
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6.1.2 Restriction on the ion backflow

One new feature of the conduction model is the restriction of the relative ion back-flow, 7;p,
to a narrow range. The matching of the quasineutral solution with the anode sheath requires
(i) the anode sheath to be ion-attracting and (ii) the ion back-flow to accelerate towards the
anode. The first condition means ¢ap > 0. From Eq.(3.12), the second condition implies that
Gp > 0in Eq.(3.12), or, using Eq.(6.3) with v; ~ 0,

2qze

— 1 <1 6.7
Nl Ve | B (6.7)

Using now Egs. (3.11) and (2.61), the two conditions yield the double restriction

C
0<In—2_ <3, 6.8
4|'UweB| ( )
or, in terms of the ion back current,
3 _ |iB|
5-107% < < 0.114, (6.9)
d

with I; = en;vz;A.. However, difficulties found in the numerical convergence around point B
near the limit ¢ 45 = 0, have forced us to exchange that limit for the close one, ¢,.g = 0, where
epap/T.p = 0.5. This moves the lower bound of the ion back-current to |Lg|/I; ~ 8- 1073,

6.2 Solution for zero-ionization regions

Since the ionization region is relatively thin, it is of interest to know how is the solution in the
regions where ionization is negligible. Making v; = 0 in Egs.(6.1) one has

Angv, = const  (a =1i,e,n),

1
—m;v2, + e® = const,

2
(6.10)
T, —ed + e _ const,
nevme
dvg;  dn T,
mMiNeVyg; = —VgMeNeUge.-
d dx

These equations together with the equation for d7,/dz yield a second order differential equation
for T, and (jace = che/nevweTe:

1dT, .
Te d£ - qmea
T, e 3 T, N\, 2 T, \. 1dA
—1) =1 (__ ) e _(1_ ) 2 YT 6.11
(mivgi d¢ * 5 mv Gre + 5 m;v2; Qe+ A d¢ (6.11)
dz T.

dé- B VgMeUge '
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The (dimensionless) auxiliary variable £ is used for convenience and to show the spatial scale
of the problem.

The equation for dj,/d¢ shows that a regular sonic transition is possible now even without
ionization. Sonic point S is regular if Gg = 0 becomes here

5
—(nevgeTe)|s, (6.12)

. 3 .
qzes = = that is qzes = 9

2 Y
a result that can be obtained from Eq.(6.5) also. Therefore, now, a regular sonic point can exist
even in a region of negligible ionization. This is a novelty with respect to the non-conduction
model.
A particular solution of these equations for A = const is

T,,® = const, Vg, qee =0, (6.13)

which corresponds to the asymptotic behavior of the diffusion region, point C.

6.3 Plasma structure and thruster performances

Figure 4 shows the axial profiles of main plasma variables for an SPT-100 type of thruster.
Design and control parameters are similar to the case of Fig. 3. The plasma structure presents
similar trends to the no-conduction solution of Ref.[37] (with no lateral losses), but heat con-
duction smoothes the temperature profile in two ways: first, the peak temperature is reduced
from about 90 eV to 65 €V; second there is a smoother transition between the diffusion and
ionization regions, leading to a shorter diffusion region, and a larger ionization layer. The re-
duction in the maximum temperature is not enough to agree with experimental values where,
for V; ~ 300 V, maximum temperatures are in the range 20 — 30eV. Therefore, wall losses need
to be considered still.

Plasma equations and boundary conditions seem to force an almost monotonic profile of g,
between B and S. Then, the heat flux at point S, gy.s, is large. In the present model, Eq. (6.3)
shows that a regular sonic transition implies to balance Joule heating, conductive heat flow,
and ionization losses. The large value of g,.s means this balance to take place mainly between
heat conduction and Joule heating,

Qze ™ 5 neTe'Ume 5

and, therefore, point S is outside (downstream, in fact) the ionization layer. In turn, the point
of maximum temperature, where g, = 0, is going to be downstream of point S, what justifies
that we could not find valid solutions with the point of maximum temperature well inside the
channel.

For the case of Fig. 4, Fig. 5(a)-(c) measure different phenomena in the electron dynamics.
This is aimed to evaluate the validity of the hypotheses supporting our model. Figure 5(a)
shows the different contributions to the total collision frequency of electrons, Eq.(2.57). Bohm
diffusion provides the main contribution from the ionization layer towards the exit, whereas
e-1 collisions (instead of the e-n collisions) dominate in the diffusion region. This last feature
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is justified by the high plasma density and low temperature there, and needs further investi-
gation. Figure 5(b) shows the axial profiles of the ionization frequency, with its peak marking
the ionization region, and the effective axial frequency for electron diffusion, Eq.(134); the
dominance of Bohm diffusion makes vy oc B(x), approximately, in most of the channel. Figure
5(c) shows that the electron mean azimuthal energy (main contribution to the electron mean
kinetic energy) is totally negligible compared to the thermal energy, except perhaps within a
small region near the anode.

Performance parameters for the case plotted in Fig. 4 are: F' ~ 90.6mN, I; ~ 4.51A,
(1g = 1.17), and n ~ 57.5%. The influence of the plasma discharge V; and the magnetic field
B,, on thruster performances have been computed from parametric continuation of the solution
of Fig. 4. The consequence of the narrow interval for 7,5 in Eq.(6.9), is a narrow range too
of the control parameters where our model yields stationary solutions (with large ionization).
As an example, Fig. 6(a) shows the band of of parameters (Vy, B,,), where solutions are found
is dramatically small; only variations of about 10% are permitted. Figures 6(b)-6(d) plot the
corresponding performance bands for thrust, discharge current, and efficiency; for F', the band
reduces practically to a line. These plots show that larger thrust and efficiency are obtained
with larger V; and B,,.
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Figure 6.1: Model with heat conduction (and no wall losses). Axial structure of the plasma
discharge for: L = 25mm, Lgp = 21.1mm, A, = 45cm?, V; = 300V, 1 = 5.2mg/s, T.p = 2.5¢V,
16ap ~ 0.067.
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Figure 6.2: Model with heat conduction (and no wall losses). Same case of Fig. 5. (a)
Contributions of different processes to the electron collision frequency v,.. (b) Axial diffusion
frequency (73 = v44/me/m;) and ionization frequency along the channel. (c¢) Ratio of electron
mean kinetic energy to electron temperature.



CHAPTER 6. EFFECTS OF HEAT CONDUCTION 79

300

©) 250

Q 200}

150 :
250 300 350

100

951

F (mN)

250 300 350

I (A)

250 300 350

0.59
0.58 |
& 057}

0.56}

0.55 :
250 300 350

Va (V)

Figure 6.3: Model with heat conduction (and no wall losses). (a) Band of input parameters
(Va, Bm) where stationary solutions have been found; rest of parameters as in Fig. 4. Line ’a’
corresponds to Gp = 0, and line ’b’ to ¢4p = 0. Bands for (b) thrust, (c) discharge current,
and (d) efficiency, corresponding to the (V4, B,,) band.



Chapter 7
SELF-OSCILLATIONS

7.1 Perturbation equations

The oscillatory behavior of Hall thrusters is here approached by investigating the stability of
the steady-state plasma structure studied in previous chapters. The linear stability analysis
is based in the plasma response to small temporal perturbations. Equations and results are
presented here for the no-conduction model with wall losses of Chap. 5.

Since temporal derivatives affect to the perturbation terms only, it is convenient to solve
plasma equations (2.55) for the spatial derivatives. This yields

P%};e =G (he = Inn,),
Ovg; 8he+y._y v-@—%
Ox “ O R L
OVge Oh, O0a  Oh,
on Uy VT T Vg T
o, vy . Oh, vy (7.1)
ap . MiVsiTg —T. 3 — VgMieUge + Vit (Un, — Vi) o
ea—¢ = % + e% + VagMeVse,
Jor Ox ox
ov, ov,
Mn¥n g = = ~Tn—" + Neliy (Vg — Un),
ony, Ovy, da  On,
Un g = = Tl = ne(Vi — Vy) — MnUng = 5

80
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with
P=T — §miv§i,
5
- 2 3 ) 3
G=v,.G=y [gaiEi +T, — gmivwe(%m - vn)} — UgmeVs, + (gmi%evm - Te) Vi
2 3 da 3 oh 0V 30T, 2 0Oh
= weTe = 1o 2 re =g me( m'—e - ;m) - ¢ — —Te—e. 7.2
Fgtwele T gMilolnely -+ wMiVae Ui 5" — 57 ) Y 55 ~ 5 ey (7.2)
The equation for the area variation in the plume must be added:
0 Tz <L
aa ) )
Usi 5 (7.3)

2¢,/d, L<z,

with ¢ = Ind.

7.2 Model of linear perturbations

To be definite, let us assume a small perturbation in the channel discharge voltage,
Va(t) = Vao + R{ Vane ™},

with Vi < Vo and w = wye + iwyy, the (complex) frequency of the perturbation mode. Then,
in the linear approximation, the plasma response is

Y (z,t) =~ Yo(z) + a%{Yl(a:;w) exp(—iwt)},

with Y'(z,t) the vector of plasma variables, Yy(z) the solution obtained from the stationary
model of Chapter 5 (subscript 0 is added now to stationary variables), and Y;(z;w) the linear
perturbation response, which is proportional to V.

From the expansion of Eqgs.(7.1) and the substitution

0/0t — —iw,

the linear equations for each perturbation mode in w are

Ohe1 - Oheo
P ze0 q _ — - (P Te P, Te >—1 7.4
0Vze0 B Gq 0Vzel + L1Vze0 B (7.4)
OVgi Oh, Oh. Oa Oa )
83:1 = _Uzila—xo — Um'oa—xl + Vit — Vg1 — Uma—; — vm'oa—m1 + iwhei, (7.5)
OVge Oh. Oh, Oa oa .
8$1 = _’Uzeoa—l_l - Uwela—xo + Vi1 — Vy1 — Uwela—xo - Umeoa—xl + 1Whela (76)
0T 0Vzio o OVzi1 Oheo Ohe1 (7 7)
= —MiVgi1 —— — MyUzi0—7 — — Le — e .
oz Y or 0 oz e O oz
+ V1M (Vno — Vgio) + VioMi(Un1 — Ugit) — Va1 MeVge0 — VaoMeVger + iMiwvygin,  (7.8)
Oe oT. Oh, Oh,
afl = 8.731 + TeO 8561 + Tel 8330 + me(VdOUwel + levrzeo)a (79)
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ov, ov
nnoﬂnoa—xl = _(nnovnl + nnlvno)a—;o (710)
+ (Ne1Vuwo + MeoVw1) (Vgio — Uno) + MeoViwo (Vzit — Un1) + iwnnoUn, (7.11)
on on ov ov
’Unoa—;;l = —Unla—;() — nnoa—;l — nnla—;o — Neo (Vi1 — V1) (7.12)
Oa a )
— N1 (Vio — Vo) — (Mp1Uno + nnovnl)a—; - nnovnoa—x1 + wnp, (7.13)
with
6
P =T, — gmivwiovwila (7-14)
_ 3 3
G1 = —VaiMeV2eg — 2Vd0MeVge1Vze0 + Vio [Tel = gmivmel(2vwi0 — Uno) — gmivmeo(2vm’1 — ’Un1)}
2 3 3 3
+ Vi [gazEz + TeO - gmivweO(QUin - 'UnO)j| + (gmivmeovzﬂil + gmivwelva}io - Tel)VwO
3 2 3 Oa
+ (gmivxeovmo - TeO>Vw1 + gl/welTeO + 5 we0lel + Smiviiovmeoa—;
6 3 oa, . I3 3 2
+ (gmivwilvinUweO + gmivziovwel)a—; + 1w I:gmiva:eo(’uwil - helvin) - gTel + gTeOheli| )
(7.15)
plus the equation for the area variation
0, T < L,
80,1
Veio = = aCL c (716)
Oz —(a1vgi0 + Uwil)—o +2-2 L<z
ox ao

with ay = Indy, di = dya;. Finally, the linear expansions for vy, V41, Vy1, and v,,.; must be
added to these equations.

7.2.1 Boundary conditions

Like the stationary equations, the perturbation equations are singular at Py = 0. The appro-
priate set of seven boundary conditions for the perturbation problem is:

1)-iv) "4, Un1a, Te1p, and ¢1p = —Vyy are known.

v) To fulfill heyp < heop, the singularity at point B for the perturbed response cannot be
of higher order than for the stationary response. Therefore, it must be

Pip = 0. (7.17)
vi) Taking ¢4 = 0, from Eq.(3.11), the perturbation of the sheath potential is

Te Fz Fe
ep1B = edop T By Teon ( Ll 13) .
e0B

vii) For the perturbed solution to be regular at point S, the right side of Eq.(7.4) must be
zero. Considering that Pys = Gog = 0, the regularity condition at point S is

- Oh, - 0G,y/0
0= G1 — Plvmeo—o]s = Glg - PIS%.
0

7.18
L Teon (7.18)

e (7.19)
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7.2.2 Integration procedure

The perturbation of point S, zg1, is part of the solution. From the expansions of Ps = 0 and
Gs = 0, one has
Pys Gis

_ _ _ 7.20
R T T A TE N E (7:20)

The compatibility of these two relations is assured by condition (7.19).
The perturbation of the discharge current, I'y1, is part of the solution also. It satisfies

Fil ($) — Fel (.7,') = Fdl = const, (721)
However, the mass flow perturbation changes along the channel,
Ly (z) + Cpi(x) = Tyi(x) # const.

The numerical integration of this perturbation problem is performed again with a Runge-
Kutta algorithm from point S towards points B and E. However, there appear new, delicate
issues in the region BS, related to singular points B and S. These are

1) To obtain the spatial derivatives of perturbed variables at point S requires to know the
second derivatives of Gy and F.

2) These second derivatives must be used now on the 0th order solution as well, for a smooth
matching of the spatial profiles in the vicinity of point S.

3) A perturbation solution launched from point S is unbounded (i.e. tends to infinity) at
point B. Therefore, it must be stopped before point B and be matched to an independent
solution launched from point B, at an intermediate point (here chosen as My = —0.2). This
increases the number of 'fundamental modes’ (each one proportional to a ’fundamental param-
eter’) constituting the general solution, but, since the problem is linear, it avoids completely
any subsequent iteration.

The solution of the perturbation problem is thus written in the form

Yi(z) = Z e Yaj(x) + Y buYu(z), (7.22)

where

C1 = [c11, -, C19] = [Me1s, 1S VzelS, UniS, Melss D185 MelBs VzelBs LeiB | (7.23)

is a vector of unknown parameters, [bi1, bi1a] = [Un14,'m14] are known parameters, and Y;; and
Yy, constitute eleven 'fundamental modes’, which depends on @ and the vector Cy of parameters
defining the stationary solution (tildes mean dimensionless magnitudes).

Next we impose the continuity of the solution at the intermediate point and the values T,;p
and ¢;p for the temperature and the potential at point P. In total, these constitute nine linear
relations that we can write in the form

MCl = Bl, (724)

where: B, includes five zeros and the perturbations of four control parameters: v,14, I'mi4,
Te1p and ¢1p; and M is a square matrix, obtained from the fundamental modes, which depends
on @ and Cj.
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7.3 Self-excited modes

Linear self-excited modes are singular solutions of the perturbation problem for homogeneous
boundary conditions, i.e. By = 0. The frequencies of the self-excited modes are the solutions
of the global dispersion relation

D(@; Cp) =det M = 0. (7.25)

The self-excited modes are unstable if &;,,, > 0.

Fig. 7.1 shows the frequencies of the main five self-excited modes corresponding to the
steady-state solution of Fig. 5.1. Notice that only Mode 1 is unstable for this case. Self-excited
modes are difficult to obtain since the zeros of detD are very sharp. This makes advisable to
solve both D, = 0 and D;,, = 0 instead of just detD = 0; indeed, Noguchi|41] failed to find
unstable modes because he used this last method.

The five self-frequencies of Fig. 7.1 are:

— Mode 0:  w(kHz) =0 —7.2i7.2

— Mode 1:  w(kHz) = 45.2 +17.2i
— Mode 2:  w(kHz) = 142.3 — 23.2i
— Mode 3:  w(kHz) = 51.7 — 75.3i
— Mode 4:  w(kHz) = 119.5 — 90.4i

Figures 7.2-7.8 show the spatial profiles of some perturbation variables for the five modes,
and contour plots for Modes 1 and 2. These two modes seem to be the main ones with respect to
stability (Mode 2 has been found unstable for other steady-state solutions). The five self-excited
modes present several similarities. First, in all modes, unstable and stable, perturbations are
stronger in the ionization layer. This is the consequence of spatial gradients being larger there.
Large ionization fluctuations are found also in the dynamic response to regular perturbations,
—that is solutions with B; # O in Eq. (7.24)—. Therefore, ionization waves should not be
considered the mark characterizing self-excited modes, as suggested by some people. Other
common features of self-excited modes are that ion and neutrals acoustic waves are launched
in both directions within the subsonic region of the channel, whereas the acceleration region
and the plume seem to have a minor role in the dynamic response.

Contour plots in Figs. 7.4 and 7.6 show that neutral perturbations are forward travel-
ing waves (indeed they are standing waves mounted on the stationary neutral flow), while
ion perturbations form a backward traveling wave. Electron perturbations are controlled by
quasineutrality and fulfill Eq. (7.21). The main differences between Modes 1 and 2 are observed
in the wavelengths and phase velocities of the ion and neutral waves. This seems to indicate
that the self-excitation is related to the coupling between ionization and acoustic waves in the
diffusion region, with a secondary role for the acceleration region. However, further work is
necessary to understand the sequence of mechanisms that feed the self-excited modes.

Figures 7.9-7.11 show the influence of B,,, V; and 1 in the self-frequency of Mode 1. Relative
variations are of order one and the instability persists in the parametric range shown there.
No general conclusions should be drawn, from this particular case, about the stabilizing or
unstabilizing effect of those parameters.

Finally, the comparison of self-excited modes of steady-state solutions with and without
wall losses does not show significant differences.
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Figure 7.1: First self-excited modes for the stationary solution of Fig. 3.2. Solid lines: D,. = 0;
dash-dot lines: D;,, = 0. Modal frequencies are given by the intersection of both lines Dashed
lines are contour lines for |D| constant and small.
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Figure 7.2: Mode 0 (of Fig. 7.1): Spatial profiles of different perturbation magnitudes [say
Yi(z,t) = Y1(z) exp(—iwt)] normalized with 4y /T'g9 = 1. Solid line: envelope of perturbation
amplitude [i.e. |Y'1(z)|]; Dashed line: perturbation at a fixed time [i.e. |R{Y 1(z)}|]
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Figure 7.3: Mode 1 (of Fig. 7.1): spatial profiles for I'g; /T'go = 1.
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Figure 7.4: Mode 1: Contour plots of (a) n,1, (b)I;1, (¢)[e1, and (d)¢;.
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Figure 7.6: Mode 2: Contour plots of (a) n,1, (b)[';1, (¢)Te1, and (d)¢s. .
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Figure 7.7: Mode 3: spatial profiles for I'y; /T'go = 1.
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Figure 7.8: Mode 4: spatial profiles for I'y; /T'go = 1.
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Figure 7.9: Evolution of the complex frequency of Mode 1 with B,,. The rest of Oth order
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Figure 7.10: Evolution of the complex frequency of Mode 1 with V;. The rest of Oth order
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Chapter 8
SUMMARY

This work has presented, through successive stages grouped in Chaps. 2 to 7, a semi-analytical
macroscopic model of the plasma discharge in a Hall thruster. In Chap. 2 we have formulated
the general model for the plasma discharge both inside the thruster and in the near-plume.
Plasma equations, collisional processes, simplifying hypotheses, spatial scales, and other issues
have been discussed and evaluated.

Chapter 3 presents what can be called the ’core model’;, which ignores electron heat con-
duction and the interaction of the plasma with the channel lateral walls. Since both thruster
channel, near-plume, and neutralizer are included in the model, we could analyze the complete
response of the plasma in terms of actual control/design parameters. The main achievement
of the core model is the reproduction of the different regions of the rich plasma structure ob-
served experimentally, and the understanding of many of the discharge basic physics. Other
accomplishments here have been (i) to show that optimum operation conditions correspond to
solutions with an internal sonic transition, and (ii) to find that the domain where stationary
solutions exist is limited.

In Chap. 4 we discussed a radial model for the interaction of the plasma with the dielectric
walls of the thruster channel. The model includes, in a consistent way, wall-emitted, plasma-
trapped electrons, explains the transition to a regime with charge-saturated sheaths, and solves
the presheath /sheath radial structure totally. Finally, losses of plasma current and energy, and
gains in electron azimuthal momentum (leading to near-wall conductivity), in the channel, have
been evaluated.

Chapters 5 and 6 were dedicated to improve the core model. In Chap. 5 we included the
effects of the radial plasma/wall interaction into the axial model. Results obtained until now
show very large losses of plasma current and energy, unless some mechanism, not well identified
yet, inhibits the radial fluxes to the walls. On the contrary, near-wall conductivity is found
marginal, for inhibited flows, at least. However, few cases have been run still and further
research is needed before reliable conclusions can be formulated.

In Chap. 6 we modified the core model by considering heat conduction effects (but radial in-
teraction was ignored). The differences in the mathematical formulation for the heat-conduction
model has required to adapt the integration procedure. The new stationary solutions present
smoother temperature profiles, more according to experimental ones, but heat conduction is
found insufficient by itself to reduce the peak temperature to experimental values. The general
plasma structure is maintained with a shorter diffusion region and the sonic transition away
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from the ionization layer outer bound. Finally, the most worrying conclusion of this conductive
model is the dramatic reduction in the parametric domain of stationary solutions (of known
ones, at least).

In Chap. 7 we undertook a linear stability analysis of the steady-state plasma structure.
The analysis is classical but the formulation and solving of the perturbation model is rather
sophisticated due to the rich stationary structure and the presence of singular points. Lon-
gitudinal self-excited modes, some of them are stable and other ones unstable, are found in
the same frequency range than experiments (10-100 kHz), Self-oscillations are far from being
simple and well understood. They consist of local ionization waves and ion and neutral acoustic
waves counter-traveling along the subsonic part of the channel. Coupling of the different funda-
mental waves takes place at the ionization layer and the anode sheath, and through collisional
processes. Electron perturbations are governed by quasineutrality, and the regions of super-
sonic acceleration, including the plume, have a marginal role in these modes. An unfinished
parametric investigation have not shown ways to reduce effectively the unstable modes yet.

Different parts of this work have been presented in recent International Conferences and
published in technical papers and in Physics of Plasmas [42, 37, 43, 36, 44].

Future research should deal with:

1) A model of radial interaction with partial-trapping of secondary emission and cylindrical
effects. Partial-trapping is expected to obstruct charge-saturation of the radial sheath and,
therefore, to reduce energy losses. Cylindrical effects should produce an asymmetry between
the two thruster walls with possible effects on electron trapping and flow inhibition.

2) A unified model with heat conduction and losses at lateral walls. This means to add the
radial model of Chap. 4 (or an improved version) into the conductive model of Chap. 6.

3) A comparative study of the results of these 1D macroscopic models with those of 2D
PIC-based models. This comparison could provide relevant clues to evaluate and improve both
types of models and to use them in combination for thruster design and analysis.

4) Progresses in the study of thruster oscillations. This should include both a better under-
standing of the unstable modes, and investigation of whether the parametric domain with no
stationary solutions corresponds to thruster oscillatory behaviors observed experimentally.



Appendix A

Expansion around sonic points

A.1 Stationary model

A.1.1 Singular sonic point

At a singular sonic point one has Py = 0 and Gy # 0. Around this point and for 9/0t = 0,
Eqgs.(7.1) yield the expansion

God$ = Podheo,

dheo = —dvm'o/ Vg0,

dTeo = (Teo/Vzio — MiVzio) dVgip-
Taking v,y as independent variable, and differentiating once more, one has

8
d’r ~ ——dv?,
T 5GO Vzio>

and the velocity profile around the singular point is

Avmoz,/gchx. (A.2)

The profiles of T¢p and heg are obtained from the above linear relations with vzi9. From Eq.(A.2),
a valid spatial solution with points B and S singular, must have Gg < 0 and Gg > 0.

(A1)

A.1.2 Regular sonic point

In a regular point S, one has Gy = 0 and Pyg = 0, so the derivatives of the plasma variables in
Eqgs.(7.1) are not determined and the numerical integration cannot proceed directly from point
S. To determine them, it is convenient to use the auxiliary variable ¢ defined by

Mz /dé = A\t' = Pyugeo, (A.3)

with A any constant. Then, the equation for AL, in Eqgs.(7.1) becomes (for A(z) = const around
point S)

ALy = Gy (A.4)
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and Eqgs.(7.1) can be written as

Vio = —Vzioleg + VioT', (A.5)
T}y = —MiVgioVsio — Teohey + My (ViO (Vno — Vgio) — VdOmeU:ceO) z', (A.6)
Voo = —VUzeohlhy + VioT', (A.7)
€¢6 = TéO + TeOh;o + meVdO'Ua:er,a (A8)
vho =0, (A.9)
VnoMg = —NeolioX - (A.10)

Notice that point S is now a ’stationary point’ of the above equations in &.
The expansion of the RHS of Egs. (A.3) and (A.4) around point S is

6
' ~ T — gm,-vm-ov;io + HOT, (A.11)
3 2
)\hleo ~ gmz’(l/wo - 2Vi0)vme0v;10 + (ViO — Vyo + ngeO)TeIO - mevieOV{iO
3 2 3 2
+ {Smivmeo(vno — 2’0@0) + ga’iEz' + Te0:| Vz{O + (sz”l)mio’l)meo - TeO) Vqluo + gTeOVTIueO + HOT,
(A.12)

or, in matrix notation,

Vio
! ! !
%5]:%[%q+m a0 | + HOT. (A.13)
el el VIwO
wel

The derivatives of the diverse frequencies can be written, in matrix form, as

v
;LO ! !
Va0 =M[$]vam} A4
V;Iuo ’ heo ! T3 ( )
Vweo _
Then, Egs. (A.5)-(A.6) provide a matrix relation
[ Viio _ a’
Neglecting now HOT in Eq. (A.13), one has, at point S,
z' z'
i =4, | (4.16)

with

szb]ﬂM+%MWﬁMmg (A.17)
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The two possible slopes of dhey/z'|s correspond to the eigenvectors of matrix A. These eigen-

vectors are real for
(a — d)® + 4bc > 0,

so only the parametric domain verifying this condition must be studied.

A.2 Perturbation model

A.2.1 Singular sonic point
To depart from point B, the quantity

0Y;
W= Pty |

(A.18)

must be known, which means to solve the indetermination P, /P, in Eq.(7.4). Expanding the

perturbation equations, the problem reduces to solve three linear equations for h

'
Teb
! 6 i 6,1
B =Gy — VUgel + Tel — 5Vzi0 Vg1 — 5UszioVril G
el — Y1 T 6 ! 05
Vgeo e0 — 5Uzi0Vgio
! 5 '
Uit = —Vzit Go — Vzioley
' ! ! ~ !
Ty = —VgitVip — Va0V — TerGo — Teohyy s
with
1 A (2 ~
Ugio = _v-’”OGO’ TeO - (UzciO T, )GO

A.2.2 Regular sonic point

Equations need to be expanded twice to determine
Y] = Y1 /0x|s.
Differentiating in Eq. (5.5) for heg, one has
Pyvgeohlly + Pivgeohly + Povlohly, = Gy [182]
and, particularizing at point S,
Posvzeoshyys = Gos-
Differentiating in Eq.(A.23) and particularizing at point S, one has

! n o 1/ / ! !
2Pysvze0sheys = Gos — (PosVzeos + 2PysVp005) Pros

zelr

and

(A.19)

(A.20)
(A.21)

(A.22)

(A.23)

(A.24)

(A.25)
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Finally, differentiating Eq.(7.4),

n / ! ! !

zel

Gll — (P()v;cel + Plv.’zeO)hfZ() — (P(;’Uwel + Pll’l)_;ce() -+ P()’U;el + P1’UI )h’IeO

zel

and particularizing at point S, one has

/ ! ! n / ! ! !
PosVzeoshiys = Gl — Pistseosheys — (PosVzers + PlsVzeos + PLsVpeos) Peos- (A.26)

Equations for P}, Py, Gj, Gy, P}, and G, include first and second derivatives of the different
plasma variables. Once all the equations are added we have three set of linear equations to
determine Yy, Y{%, and Y/s.
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